Metamath Proof Explorer


Definition df-ub

Description: Define the upper bound relationship functor. See brub for value. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Assertion df-ub UB R = V × V V R E -1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 0 cub class UB R
2 cvv class V
3 2 2 cxp class V × V
4 2 0 cdif class V R
5 cep class E
6 5 ccnv class E -1
7 4 6 ccom class V R E -1
8 3 7 cdif class V × V V R E -1
9 1 8 wceq wff UB R = V × V V R E -1