Metamath Proof Explorer


Definition df-ub

Description: Define the upper bound relationship functor. See brub for value. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Assertion df-ub UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ E ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 0 cub UB 𝑅
2 cvv V
3 2 2 cxp ( V × V )
4 2 0 cdif ( V ∖ 𝑅 )
5 cep E
6 5 ccnv E
7 4 6 ccom ( ( V ∖ 𝑅 ) ∘ E )
8 3 7 cdif ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ E ) )
9 1 8 wceq UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ E ) )