Metamath Proof Explorer
Definition df-ub
Description: Define the upper bound relationship functor. See brub for value.
(Contributed by Scott Fenton, 3-May-2018)
|
|
Ref |
Expression |
|
Assertion |
df-ub |
⊢ UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
⊢ 𝑅 |
1 |
0
|
cub |
⊢ UB 𝑅 |
2 |
|
cvv |
⊢ V |
3 |
2 2
|
cxp |
⊢ ( V × V ) |
4 |
2 0
|
cdif |
⊢ ( V ∖ 𝑅 ) |
5 |
|
cep |
⊢ E |
6 |
5
|
ccnv |
⊢ ◡ E |
7 |
4 6
|
ccom |
⊢ ( ( V ∖ 𝑅 ) ∘ ◡ E ) |
8 |
3 7
|
cdif |
⊢ ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) |
9 |
1 8
|
wceq |
⊢ UB 𝑅 = ( ( V × V ) ∖ ( ( V ∖ 𝑅 ) ∘ ◡ E ) ) |