Metamath Proof Explorer
		
		
		Definition df-ub
		Description:  Define the upper bound relationship functor.  See brub for value.
     (Contributed by Scott Fenton, 3-May-2018)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-ub | ⊢  UB 𝑅  =  ( ( V  ×  V )  ∖  ( ( V  ∖  𝑅 )  ∘  ◡  E  ) ) | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR | ⊢ 𝑅 | 
						
							| 1 | 0 | cub | ⊢ UB 𝑅 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 | 2 2 | cxp | ⊢ ( V  ×  V ) | 
						
							| 4 | 2 0 | cdif | ⊢ ( V  ∖  𝑅 ) | 
						
							| 5 |  | cep | ⊢  E | 
						
							| 6 | 5 | ccnv | ⊢ ◡  E | 
						
							| 7 | 4 6 | ccom | ⊢ ( ( V  ∖  𝑅 )  ∘  ◡  E  ) | 
						
							| 8 | 3 7 | cdif | ⊢ ( ( V  ×  V )  ∖  ( ( V  ∖  𝑅 )  ∘  ◡  E  ) ) | 
						
							| 9 | 1 8 | wceq | ⊢ UB 𝑅  =  ( ( V  ×  V )  ∖  ( ( V  ∖  𝑅 )  ∘  ◡  E  ) ) |