Description: Define the upper bound relationship functor. See brub for value. (Contributed by Scott Fenton, 3-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ub | |- UB R = ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | 0 | cub | |- UB R |
2 | cvv | |- _V |
|
3 | 2 2 | cxp | |- ( _V X. _V ) |
4 | 2 0 | cdif | |- ( _V \ R ) |
5 | cep | |- _E |
|
6 | 5 | ccnv | |- `' _E |
7 | 4 6 | ccom | |- ( ( _V \ R ) o. `' _E ) |
8 | 3 7 | cdif | |- ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) |
9 | 1 8 | wceq | |- UB R = ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) |