| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brub.1 |  |-  S e. _V | 
						
							| 2 |  | brub.2 |  |-  A e. _V | 
						
							| 3 |  | brxp |  |-  ( S ( _V X. _V ) A <-> ( S e. _V /\ A e. _V ) ) | 
						
							| 4 | 1 2 3 | mpbir2an |  |-  S ( _V X. _V ) A | 
						
							| 5 |  | brdif |  |-  ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> ( S ( _V X. _V ) A /\ -. S ( ( _V \ R ) o. `' _E ) A ) ) | 
						
							| 6 | 4 5 | mpbiran |  |-  ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> -. S ( ( _V \ R ) o. `' _E ) A ) | 
						
							| 7 | 1 2 | coepr |  |-  ( S ( ( _V \ R ) o. `' _E ) A <-> E. x e. S x ( _V \ R ) A ) | 
						
							| 8 | 6 7 | xchbinx |  |-  ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> -. E. x e. S x ( _V \ R ) A ) | 
						
							| 9 |  | df-ub |  |-  UB R = ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) | 
						
							| 10 | 9 | breqi |  |-  ( S UB R A <-> S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A ) | 
						
							| 11 |  | brv |  |-  x _V A | 
						
							| 12 |  | brdif |  |-  ( x ( _V \ R ) A <-> ( x _V A /\ -. x R A ) ) | 
						
							| 13 | 11 12 | mpbiran |  |-  ( x ( _V \ R ) A <-> -. x R A ) | 
						
							| 14 | 13 | rexbii |  |-  ( E. x e. S x ( _V \ R ) A <-> E. x e. S -. x R A ) | 
						
							| 15 |  | rexnal |  |-  ( E. x e. S -. x R A <-> -. A. x e. S x R A ) | 
						
							| 16 | 14 15 | bitri |  |-  ( E. x e. S x ( _V \ R ) A <-> -. A. x e. S x R A ) | 
						
							| 17 | 16 | con2bii |  |-  ( A. x e. S x R A <-> -. E. x e. S x ( _V \ R ) A ) | 
						
							| 18 | 8 10 17 | 3bitr4i |  |-  ( S UB R A <-> A. x e. S x R A ) |