Step |
Hyp |
Ref |
Expression |
1 |
|
brub.1 |
|- S e. _V |
2 |
|
brub.2 |
|- A e. _V |
3 |
|
brxp |
|- ( S ( _V X. _V ) A <-> ( S e. _V /\ A e. _V ) ) |
4 |
1 2 3
|
mpbir2an |
|- S ( _V X. _V ) A |
5 |
|
brdif |
|- ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> ( S ( _V X. _V ) A /\ -. S ( ( _V \ R ) o. `' _E ) A ) ) |
6 |
4 5
|
mpbiran |
|- ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> -. S ( ( _V \ R ) o. `' _E ) A ) |
7 |
1 2
|
coepr |
|- ( S ( ( _V \ R ) o. `' _E ) A <-> E. x e. S x ( _V \ R ) A ) |
8 |
6 7
|
xchbinx |
|- ( S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A <-> -. E. x e. S x ( _V \ R ) A ) |
9 |
|
df-ub |
|- UB R = ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) |
10 |
9
|
breqi |
|- ( S UB R A <-> S ( ( _V X. _V ) \ ( ( _V \ R ) o. `' _E ) ) A ) |
11 |
|
brv |
|- x _V A |
12 |
|
brdif |
|- ( x ( _V \ R ) A <-> ( x _V A /\ -. x R A ) ) |
13 |
11 12
|
mpbiran |
|- ( x ( _V \ R ) A <-> -. x R A ) |
14 |
13
|
rexbii |
|- ( E. x e. S x ( _V \ R ) A <-> E. x e. S -. x R A ) |
15 |
|
rexnal |
|- ( E. x e. S -. x R A <-> -. A. x e. S x R A ) |
16 |
14 15
|
bitri |
|- ( E. x e. S x ( _V \ R ) A <-> -. A. x e. S x R A ) |
17 |
16
|
con2bii |
|- ( A. x e. S x R A <-> -. E. x e. S x ( _V \ R ) A ) |
18 |
8 10 17
|
3bitr4i |
|- ( S UB R A <-> A. x e. S x R A ) |