| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-funpart |  |-  Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) | 
						
							| 2 | 1 | fveq1i |  |-  ( Funpart F ` A ) = ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) | 
						
							| 3 |  | fvres |  |-  ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) ) | 
						
							| 4 |  | nfvres |  |-  ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = (/) ) | 
						
							| 5 |  | funpartlem |  |-  ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) | 
						
							| 6 |  | eusn |  |-  ( E! x x e. ( F " { A } ) <-> E. x ( F " { A } ) = { x } ) | 
						
							| 7 | 5 6 | bitr4i |  |-  ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E! x x e. ( F " { A } ) ) | 
						
							| 8 |  | elimasng |  |-  ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) | 
						
							| 9 | 8 | elvd |  |-  ( A e. _V -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) | 
						
							| 10 |  | df-br |  |-  ( A F x <-> <. A , x >. e. F ) | 
						
							| 11 | 9 10 | bitr4di |  |-  ( A e. _V -> ( x e. ( F " { A } ) <-> A F x ) ) | 
						
							| 12 | 11 | eubidv |  |-  ( A e. _V -> ( E! x x e. ( F " { A } ) <-> E! x A F x ) ) | 
						
							| 13 | 7 12 | bitrid |  |-  ( A e. _V -> ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E! x A F x ) ) | 
						
							| 14 | 13 | notbid |  |-  ( A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> -. E! x A F x ) ) | 
						
							| 15 |  | tz6.12-2 |  |-  ( -. E! x A F x -> ( F ` A ) = (/) ) | 
						
							| 16 | 14 15 | biimtrdi |  |-  ( A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) ) | 
						
							| 17 |  | fvprc |  |-  ( -. A e. _V -> ( F ` A ) = (/) ) | 
						
							| 18 | 17 | a1d |  |-  ( -. A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) ) | 
						
							| 19 | 16 18 | pm2.61i |  |-  ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) | 
						
							| 20 | 4 19 | eqtr4d |  |-  ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) ) | 
						
							| 21 | 3 20 | pm2.61i |  |-  ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) | 
						
							| 22 | 2 21 | eqtri |  |-  ( Funpart F ` A ) = ( F ` A ) |