Step |
Hyp |
Ref |
Expression |
1 |
|
df-funpart |
|- Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) |
2 |
1
|
fveq1i |
|- ( Funpart F ` A ) = ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) |
3 |
|
fvres |
|- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) ) |
4 |
|
nfvres |
|- ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = (/) ) |
5 |
|
funpartlem |
|- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) |
6 |
|
eusn |
|- ( E! x x e. ( F " { A } ) <-> E. x ( F " { A } ) = { x } ) |
7 |
5 6
|
bitr4i |
|- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E! x x e. ( F " { A } ) ) |
8 |
|
elimasng |
|- ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
9 |
8
|
elvd |
|- ( A e. _V -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
10 |
|
df-br |
|- ( A F x <-> <. A , x >. e. F ) |
11 |
9 10
|
bitr4di |
|- ( A e. _V -> ( x e. ( F " { A } ) <-> A F x ) ) |
12 |
11
|
eubidv |
|- ( A e. _V -> ( E! x x e. ( F " { A } ) <-> E! x A F x ) ) |
13 |
7 12
|
syl5bb |
|- ( A e. _V -> ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E! x A F x ) ) |
14 |
13
|
notbid |
|- ( A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> -. E! x A F x ) ) |
15 |
|
tz6.12-2 |
|- ( -. E! x A F x -> ( F ` A ) = (/) ) |
16 |
14 15
|
syl6bi |
|- ( A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) ) |
17 |
|
fvprc |
|- ( -. A e. _V -> ( F ` A ) = (/) ) |
18 |
17
|
a1d |
|- ( -. A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) ) |
19 |
16 18
|
pm2.61i |
|- ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) |
20 |
4 19
|
eqtr4d |
|- ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) ) |
21 |
3 20
|
pm2.61i |
|- ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) |
22 |
2 21
|
eqtri |
|- ( Funpart F ` A ) = ( F ` A ) |