| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funpartfun |  |-  Fun Funpart F | 
						
							| 2 |  | funfn |  |-  ( Fun Funpart F <-> Funpart F Fn dom Funpart F ) | 
						
							| 3 | 1 2 | mpbi |  |-  Funpart F Fn dom Funpart F | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 | 4 | fconst |  |-  ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } | 
						
							| 6 |  | ffn |  |-  ( ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } -> ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) | 
						
							| 8 | 3 7 | pm3.2i |  |-  ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) | 
						
							| 9 |  | disjdif |  |-  ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) | 
						
							| 10 |  | fnun |  |-  ( ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) /\ ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) ) -> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) | 
						
							| 11 | 8 9 10 | mp2an |  |-  ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) | 
						
							| 12 |  | df-fullfun |  |-  FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) | 
						
							| 13 | 12 | fneq1i |  |-  ( FullFun F Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn _V ) | 
						
							| 14 |  | unvdif |  |-  ( dom Funpart F u. ( _V \ dom Funpart F ) ) = _V | 
						
							| 15 | 14 | eqcomi |  |-  _V = ( dom Funpart F u. ( _V \ dom Funpart F ) ) | 
						
							| 16 | 15 | fneq2i |  |-  ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) | 
						
							| 17 | 13 16 | bitri |  |-  ( FullFun F Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) | 
						
							| 18 | 11 17 | mpbir |  |-  FullFun F Fn _V |