Step |
Hyp |
Ref |
Expression |
1 |
|
funpartfun |
|- Fun Funpart F |
2 |
|
funfn |
|- ( Fun Funpart F <-> Funpart F Fn dom Funpart F ) |
3 |
1 2
|
mpbi |
|- Funpart F Fn dom Funpart F |
4 |
|
0ex |
|- (/) e. _V |
5 |
4
|
fconst |
|- ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } |
6 |
|
ffn |
|- ( ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } -> ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) |
7 |
5 6
|
ax-mp |
|- ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) |
8 |
3 7
|
pm3.2i |
|- ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) |
9 |
|
disjdif |
|- ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) |
10 |
|
fnun |
|- ( ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) /\ ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) ) -> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) |
11 |
8 9 10
|
mp2an |
|- ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) |
12 |
|
df-fullfun |
|- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |
13 |
12
|
fneq1i |
|- ( FullFun F Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn _V ) |
14 |
|
unvdif |
|- ( dom Funpart F u. ( _V \ dom Funpart F ) ) = _V |
15 |
14
|
eqcomi |
|- _V = ( dom Funpart F u. ( _V \ dom Funpart F ) ) |
16 |
15
|
fneq2i |
|- ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) |
17 |
13 16
|
bitri |
|- ( FullFun F Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) |
18 |
11 17
|
mpbir |
|- FullFun F Fn _V |