Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = A -> ( FullFun F ` x ) = ( FullFun F ` A ) ) |
2 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
3 |
1 2
|
eqeq12d |
|- ( x = A -> ( ( FullFun F ` x ) = ( F ` x ) <-> ( FullFun F ` A ) = ( F ` A ) ) ) |
4 |
|
df-fullfun |
|- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |
5 |
4
|
fveq1i |
|- ( FullFun F ` x ) = ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) |
6 |
|
disjdif |
|- ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) |
7 |
|
funpartfun |
|- Fun Funpart F |
8 |
|
funfn |
|- ( Fun Funpart F <-> Funpart F Fn dom Funpart F ) |
9 |
7 8
|
mpbi |
|- Funpart F Fn dom Funpart F |
10 |
|
0ex |
|- (/) e. _V |
11 |
10
|
fconst |
|- ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } |
12 |
|
ffn |
|- ( ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } -> ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) |
13 |
11 12
|
ax-mp |
|- ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) |
14 |
|
fvun1 |
|- ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) /\ ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. dom Funpart F ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
15 |
9 13 14
|
mp3an12 |
|- ( ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
16 |
6 15
|
mpan |
|- ( x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
17 |
|
vex |
|- x e. _V |
18 |
|
eldif |
|- ( x e. ( _V \ dom Funpart F ) <-> ( x e. _V /\ -. x e. dom Funpart F ) ) |
19 |
17 18
|
mpbiran |
|- ( x e. ( _V \ dom Funpart F ) <-> -. x e. dom Funpart F ) |
20 |
|
fvun2 |
|- ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) /\ ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. ( _V \ dom Funpart F ) ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) |
21 |
9 13 20
|
mp3an12 |
|- ( ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. ( _V \ dom Funpart F ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) |
22 |
6 21
|
mpan |
|- ( x e. ( _V \ dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) |
23 |
10
|
fvconst2 |
|- ( x e. ( _V \ dom Funpart F ) -> ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) = (/) ) |
24 |
22 23
|
eqtrd |
|- ( x e. ( _V \ dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = (/) ) |
25 |
19 24
|
sylbir |
|- ( -. x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = (/) ) |
26 |
|
ndmfv |
|- ( -. x e. dom Funpart F -> ( Funpart F ` x ) = (/) ) |
27 |
25 26
|
eqtr4d |
|- ( -. x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
28 |
16 27
|
pm2.61i |
|- ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) |
29 |
|
funpartfv |
|- ( Funpart F ` x ) = ( F ` x ) |
30 |
5 28 29
|
3eqtri |
|- ( FullFun F ` x ) = ( F ` x ) |
31 |
3 30
|
vtoclg |
|- ( A e. _V -> ( FullFun F ` A ) = ( F ` A ) ) |
32 |
|
fvprc |
|- ( -. A e. _V -> ( FullFun F ` A ) = (/) ) |
33 |
|
fvprc |
|- ( -. A e. _V -> ( F ` A ) = (/) ) |
34 |
32 33
|
eqtr4d |
|- ( -. A e. _V -> ( FullFun F ` A ) = ( F ` A ) ) |
35 |
31 34
|
pm2.61i |
|- ( FullFun F ` A ) = ( F ` A ) |