| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = A -> ( FullFun F ` x ) = ( FullFun F ` A ) ) | 
						
							| 2 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( x = A -> ( ( FullFun F ` x ) = ( F ` x ) <-> ( FullFun F ` A ) = ( F ` A ) ) ) | 
						
							| 4 |  | df-fullfun |  |-  FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) | 
						
							| 5 | 4 | fveq1i |  |-  ( FullFun F ` x ) = ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) | 
						
							| 6 |  | disjdif |  |-  ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) | 
						
							| 7 |  | funpartfun |  |-  Fun Funpart F | 
						
							| 8 |  | funfn |  |-  ( Fun Funpart F <-> Funpart F Fn dom Funpart F ) | 
						
							| 9 | 7 8 | mpbi |  |-  Funpart F Fn dom Funpart F | 
						
							| 10 |  | 0ex |  |-  (/) e. _V | 
						
							| 11 | 10 | fconst |  |-  ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } | 
						
							| 12 |  | ffn |  |-  ( ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } -> ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) | 
						
							| 14 |  | fvun1 |  |-  ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) /\ ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. dom Funpart F ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) | 
						
							| 15 | 9 13 14 | mp3an12 |  |-  ( ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) | 
						
							| 16 | 6 15 | mpan |  |-  ( x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) | 
						
							| 17 |  | vex |  |-  x e. _V | 
						
							| 18 |  | eldif |  |-  ( x e. ( _V \ dom Funpart F ) <-> ( x e. _V /\ -. x e. dom Funpart F ) ) | 
						
							| 19 | 17 18 | mpbiran |  |-  ( x e. ( _V \ dom Funpart F ) <-> -. x e. dom Funpart F ) | 
						
							| 20 |  | fvun2 |  |-  ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) /\ ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. ( _V \ dom Funpart F ) ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) | 
						
							| 21 | 9 13 20 | mp3an12 |  |-  ( ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. ( _V \ dom Funpart F ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) | 
						
							| 22 | 6 21 | mpan |  |-  ( x e. ( _V \ dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) | 
						
							| 23 | 10 | fvconst2 |  |-  ( x e. ( _V \ dom Funpart F ) -> ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) = (/) ) | 
						
							| 24 | 22 23 | eqtrd |  |-  ( x e. ( _V \ dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = (/) ) | 
						
							| 25 | 19 24 | sylbir |  |-  ( -. x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = (/) ) | 
						
							| 26 |  | ndmfv |  |-  ( -. x e. dom Funpart F -> ( Funpart F ` x ) = (/) ) | 
						
							| 27 | 25 26 | eqtr4d |  |-  ( -. x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) | 
						
							| 28 | 16 27 | pm2.61i |  |-  ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) | 
						
							| 29 |  | funpartfv |  |-  ( Funpart F ` x ) = ( F ` x ) | 
						
							| 30 | 5 28 29 | 3eqtri |  |-  ( FullFun F ` x ) = ( F ` x ) | 
						
							| 31 | 3 30 | vtoclg |  |-  ( A e. _V -> ( FullFun F ` A ) = ( F ` A ) ) | 
						
							| 32 |  | fvprc |  |-  ( -. A e. _V -> ( FullFun F ` A ) = (/) ) | 
						
							| 33 |  | fvprc |  |-  ( -. A e. _V -> ( F ` A ) = (/) ) | 
						
							| 34 | 32 33 | eqtr4d |  |-  ( -. A e. _V -> ( FullFun F ` A ) = ( F ` A ) ) | 
						
							| 35 | 31 34 | pm2.61i |  |-  ( FullFun F ` A ) = ( F ` A ) |