Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( FullFun 𝐹 ‘ 𝑥 ) = ( FullFun 𝐹 ‘ 𝐴 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( FullFun 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
4 |
|
df-fullfun |
⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) |
5 |
4
|
fveq1i |
⊢ ( FullFun 𝐹 ‘ 𝑥 ) = ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) |
6 |
|
disjdif |
⊢ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ |
7 |
|
funpartfun |
⊢ Fun Funpart 𝐹 |
8 |
|
funfn |
⊢ ( Fun Funpart 𝐹 ↔ Funpart 𝐹 Fn dom Funpart 𝐹 ) |
9 |
7 8
|
mpbi |
⊢ Funpart 𝐹 Fn dom Funpart 𝐹 |
10 |
|
0ex |
⊢ ∅ ∈ V |
11 |
10
|
fconst |
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } |
12 |
|
ffn |
⊢ ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } → ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) |
14 |
|
fvun1 |
⊢ ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ∧ ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ dom Funpart 𝐹 ) ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
15 |
9 13 14
|
mp3an12 |
⊢ ( ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ dom Funpart 𝐹 ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
16 |
6 15
|
mpan |
⊢ ( 𝑥 ∈ dom Funpart 𝐹 → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
17 |
|
vex |
⊢ 𝑥 ∈ V |
18 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom Funpart 𝐹 ) ) |
19 |
17 18
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ↔ ¬ 𝑥 ∈ dom Funpart 𝐹 ) |
20 |
|
fvun2 |
⊢ ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ∧ ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ) ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) ) |
21 |
9 13 20
|
mp3an12 |
⊢ ( ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) ) |
22 |
6 21
|
mpan |
⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) ) |
23 |
10
|
fvconst2 |
⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) → ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) = ∅ ) |
24 |
22 23
|
eqtrd |
⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ∅ ) |
25 |
19 24
|
sylbir |
⊢ ( ¬ 𝑥 ∈ dom Funpart 𝐹 → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ∅ ) |
26 |
|
ndmfv |
⊢ ( ¬ 𝑥 ∈ dom Funpart 𝐹 → ( Funpart 𝐹 ‘ 𝑥 ) = ∅ ) |
27 |
25 26
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ dom Funpart 𝐹 → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
28 |
16 27
|
pm2.61i |
⊢ ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) |
29 |
|
funpartfv |
⊢ ( Funpart 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
30 |
5 28 29
|
3eqtri |
⊢ ( FullFun 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
31 |
3 30
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
32 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( FullFun 𝐹 ‘ 𝐴 ) = ∅ ) |
33 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
34 |
32 33
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
35 |
31 34
|
pm2.61i |
⊢ ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |