| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( FullFun 𝐹 ‘ 𝑥 )  =  ( FullFun 𝐹 ‘ 𝐴 ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( FullFun 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( FullFun 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 4 |  | df-fullfun | ⊢ FullFun 𝐹  =  ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) | 
						
							| 5 | 4 | fveq1i | ⊢ ( FullFun 𝐹 ‘ 𝑥 )  =  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 ) | 
						
							| 6 |  | disjdif | ⊢ ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅ | 
						
							| 7 |  | funpartfun | ⊢ Fun  Funpart 𝐹 | 
						
							| 8 |  | funfn | ⊢ ( Fun  Funpart 𝐹  ↔  Funpart 𝐹  Fn  dom  Funpart 𝐹 ) | 
						
							| 9 | 7 8 | mpbi | ⊢ Funpart 𝐹  Fn  dom  Funpart 𝐹 | 
						
							| 10 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 11 | 10 | fconst | ⊢ ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) : ( V  ∖  dom  Funpart 𝐹 ) ⟶ { ∅ } | 
						
							| 12 |  | ffn | ⊢ ( ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) : ( V  ∖  dom  Funpart 𝐹 ) ⟶ { ∅ }  →  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 ) | 
						
							| 14 |  | fvun1 | ⊢ ( ( Funpart 𝐹  Fn  dom  Funpart 𝐹  ∧  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 )  ∧  ( ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅  ∧  𝑥  ∈  dom  Funpart 𝐹 ) )  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( Funpart 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 | 9 13 14 | mp3an12 | ⊢ ( ( ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅  ∧  𝑥  ∈  dom  Funpart 𝐹 )  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( Funpart 𝐹 ‘ 𝑥 ) ) | 
						
							| 16 | 6 15 | mpan | ⊢ ( 𝑥  ∈  dom  Funpart 𝐹  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( Funpart 𝐹 ‘ 𝑥 ) ) | 
						
							| 17 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 18 |  | eldif | ⊢ ( 𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 )  ↔  ( 𝑥  ∈  V  ∧  ¬  𝑥  ∈  dom  Funpart 𝐹 ) ) | 
						
							| 19 | 17 18 | mpbiran | ⊢ ( 𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 )  ↔  ¬  𝑥  ∈  dom  Funpart 𝐹 ) | 
						
							| 20 |  | fvun2 | ⊢ ( ( Funpart 𝐹  Fn  dom  Funpart 𝐹  ∧  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 )  ∧  ( ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅  ∧  𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 ) ) )  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ‘ 𝑥 ) ) | 
						
							| 21 | 9 13 20 | mp3an12 | ⊢ ( ( ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅  ∧  𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 ) )  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ‘ 𝑥 ) ) | 
						
							| 22 | 6 21 | mpan | ⊢ ( 𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 )  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ‘ 𝑥 ) ) | 
						
							| 23 | 10 | fvconst2 | ⊢ ( 𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 )  →  ( ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ‘ 𝑥 )  =  ∅ ) | 
						
							| 24 | 22 23 | eqtrd | ⊢ ( 𝑥  ∈  ( V  ∖  dom  Funpart 𝐹 )  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ∅ ) | 
						
							| 25 | 19 24 | sylbir | ⊢ ( ¬  𝑥  ∈  dom  Funpart 𝐹  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ∅ ) | 
						
							| 26 |  | ndmfv | ⊢ ( ¬  𝑥  ∈  dom  Funpart 𝐹  →  ( Funpart 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 27 | 25 26 | eqtr4d | ⊢ ( ¬  𝑥  ∈  dom  Funpart 𝐹  →  ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( Funpart 𝐹 ‘ 𝑥 ) ) | 
						
							| 28 | 16 27 | pm2.61i | ⊢ ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) ‘ 𝑥 )  =  ( Funpart 𝐹 ‘ 𝑥 ) | 
						
							| 29 |  | funpartfv | ⊢ ( Funpart 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) | 
						
							| 30 | 5 28 29 | 3eqtri | ⊢ ( FullFun 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) | 
						
							| 31 | 3 30 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ( FullFun 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 32 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  ( FullFun 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 33 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 34 | 32 33 | eqtr4d | ⊢ ( ¬  𝐴  ∈  V  →  ( FullFun 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 35 | 31 34 | pm2.61i | ⊢ ( FullFun 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) |