| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres | ⊢ Rel  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) | 
						
							| 2 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 3 | 2 | brresi | ⊢ ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧  ↔  ( 𝑥  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ∧  𝑥 𝐹 𝑧 ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧  →  𝑥 𝐹 𝑧 ) | 
						
							| 5 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 6 | 5 | brresi | ⊢ ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ↔  ( 𝑥  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ∧  𝑥 𝐹 𝑦 ) ) | 
						
							| 7 |  | funpartlem | ⊢ ( 𝑥  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃ 𝑤 ( 𝐹  “  { 𝑥 } )  =  { 𝑤 } ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( 𝑥  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ∧  𝑥 𝐹 𝑦 )  ↔  ( ∃ 𝑤 ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  ∧  𝑥 𝐹 𝑦 ) ) | 
						
							| 9 | 6 8 | bitri | ⊢ ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ↔  ( ∃ 𝑤 ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  ∧  𝑥 𝐹 𝑦 ) ) | 
						
							| 10 |  | df-br | ⊢ ( 𝑥 𝐹 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐹 ) | 
						
							| 11 |  | df-br | ⊢ ( 𝑥 𝐹 𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈  𝐹 ) | 
						
							| 12 | 10 11 | anbi12i | ⊢ ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  ↔  ( 〈 𝑥 ,  𝑦 〉  ∈  𝐹  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝐹 ) ) | 
						
							| 13 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 14 | 13 5 | elimasn | ⊢ ( 𝑦  ∈  ( 𝐹  “  { 𝑥 } )  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐹 ) | 
						
							| 15 | 13 2 | elimasn | ⊢ ( 𝑧  ∈  ( 𝐹  “  { 𝑥 } )  ↔  〈 𝑥 ,  𝑧 〉  ∈  𝐹 ) | 
						
							| 16 | 14 15 | anbi12i | ⊢ ( ( 𝑦  ∈  ( 𝐹  “  { 𝑥 } )  ∧  𝑧  ∈  ( 𝐹  “  { 𝑥 } ) )  ↔  ( 〈 𝑥 ,  𝑦 〉  ∈  𝐹  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝐹 ) ) | 
						
							| 17 | 12 16 | bitr4i | ⊢ ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  ↔  ( 𝑦  ∈  ( 𝐹  “  { 𝑥 } )  ∧  𝑧  ∈  ( 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 18 |  | eleq2 | ⊢ ( ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  →  ( 𝑦  ∈  ( 𝐹  “  { 𝑥 } )  ↔  𝑦  ∈  { 𝑤 } ) ) | 
						
							| 19 |  | eleq2 | ⊢ ( ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  →  ( 𝑧  ∈  ( 𝐹  “  { 𝑥 } )  ↔  𝑧  ∈  { 𝑤 } ) ) | 
						
							| 20 | 18 19 | anbi12d | ⊢ ( ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  →  ( ( 𝑦  ∈  ( 𝐹  “  { 𝑥 } )  ∧  𝑧  ∈  ( 𝐹  “  { 𝑥 } ) )  ↔  ( 𝑦  ∈  { 𝑤 }  ∧  𝑧  ∈  { 𝑤 } ) ) ) | 
						
							| 21 |  | velsn | ⊢ ( 𝑦  ∈  { 𝑤 }  ↔  𝑦  =  𝑤 ) | 
						
							| 22 |  | velsn | ⊢ ( 𝑧  ∈  { 𝑤 }  ↔  𝑧  =  𝑤 ) | 
						
							| 23 |  | equtr2 | ⊢ ( ( 𝑦  =  𝑤  ∧  𝑧  =  𝑤 )  →  𝑦  =  𝑧 ) | 
						
							| 24 | 21 22 23 | syl2anb | ⊢ ( ( 𝑦  ∈  { 𝑤 }  ∧  𝑧  ∈  { 𝑤 } )  →  𝑦  =  𝑧 ) | 
						
							| 25 | 20 24 | biimtrdi | ⊢ ( ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  →  ( ( 𝑦  ∈  ( 𝐹  “  { 𝑥 } )  ∧  𝑧  ∈  ( 𝐹  “  { 𝑥 } ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 26 | 17 25 | biimtrid | ⊢ ( ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  →  ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 27 | 26 | exlimiv | ⊢ ( ∃ 𝑤 ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  →  ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 28 | 27 | impl | ⊢ ( ( ( ∃ 𝑤 ( 𝐹  “  { 𝑥 } )  =  { 𝑤 }  ∧  𝑥 𝐹 𝑦 )  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 29 | 9 28 | sylanb | ⊢ ( ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 30 | 4 29 | sylan2 | ⊢ ( ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ∧  𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 31 | 30 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ∧  𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 32 | 31 | ax-gen | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ∧  𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 33 |  | df-funpart | ⊢ Funpart 𝐹  =  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) | 
						
							| 34 | 33 | funeqi | ⊢ ( Fun  Funpart 𝐹  ↔  Fun  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ) | 
						
							| 35 |  | dffun2 | ⊢ ( Fun  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) )  ↔  ( Rel  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) )  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ∧  𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 36 | 34 35 | bitri | ⊢ ( Fun  Funpart 𝐹  ↔  ( Rel  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) )  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑦  ∧  𝑥 ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 37 | 1 32 36 | mpbir2an | ⊢ Fun  Funpart 𝐹 |