Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
2
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ↔ ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ∧ 𝑥 𝐹 𝑧 ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 → 𝑥 𝐹 𝑧 ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
5
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ↔ ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ∧ 𝑥 𝐹 𝑦 ) ) |
7 |
|
funpartlem |
⊢ ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑥 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ∧ 𝑥 𝐹 𝑦 ) ) |
9 |
6 8
|
bitri |
⊢ ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ↔ ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ∧ 𝑥 𝐹 𝑦 ) ) |
10 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
11 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) |
12 |
10 11
|
anbi12i |
⊢ ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ) |
13 |
|
vex |
⊢ 𝑥 ∈ V |
14 |
13 5
|
elimasn |
⊢ ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
15 |
13 2
|
elimasn |
⊢ ( 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) |
16 |
14 15
|
anbi12i |
⊢ ( ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ) |
17 |
12 16
|
bitr4i |
⊢ ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) ↔ ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) ) |
18 |
|
eleq2 |
⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 𝑦 ∈ { 𝑤 } ) ) |
19 |
|
eleq2 |
⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ↔ 𝑧 ∈ { 𝑤 } ) ) |
20 |
18 19
|
anbi12d |
⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) ↔ ( 𝑦 ∈ { 𝑤 } ∧ 𝑧 ∈ { 𝑤 } ) ) ) |
21 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑤 } ↔ 𝑦 = 𝑤 ) |
22 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑤 } ↔ 𝑧 = 𝑤 ) |
23 |
|
equtr2 |
⊢ ( ( 𝑦 = 𝑤 ∧ 𝑧 = 𝑤 ) → 𝑦 = 𝑧 ) |
24 |
21 22 23
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑤 } ∧ 𝑧 ∈ { 𝑤 } ) → 𝑦 = 𝑧 ) |
25 |
20 24
|
syl6bi |
⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑦 ∈ ( 𝐹 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐹 “ { 𝑥 } ) ) → 𝑦 = 𝑧 ) ) |
26 |
17 25
|
syl5bi |
⊢ ( ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) |
27 |
26
|
exlimiv |
⊢ ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } → ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) |
28 |
27
|
impl |
⊢ ( ( ( ∃ 𝑤 ( 𝐹 “ { 𝑥 } ) = { 𝑤 } ∧ 𝑥 𝐹 𝑦 ) ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) |
29 |
9 28
|
sylanb |
⊢ ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) |
30 |
4 29
|
sylan2 |
⊢ ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) |
31 |
30
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) |
32 |
31
|
ax-gen |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) |
33 |
|
df-funpart |
⊢ Funpart 𝐹 = ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) |
34 |
33
|
funeqi |
⊢ ( Fun Funpart 𝐹 ↔ Fun ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ) |
35 |
|
dffun2 |
⊢ ( Fun ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ↔ ( Rel ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
36 |
34 35
|
bitri |
⊢ ( Fun Funpart 𝐹 ↔ ( Rel ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑦 ∧ 𝑥 ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
37 |
1 32 36
|
mpbir2an |
⊢ Fun Funpart 𝐹 |