| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  𝐴  ∈  V ) | 
						
							| 2 |  | vsnid | ⊢ 𝑥  ∈  { 𝑥 } | 
						
							| 3 |  | eleq2 | ⊢ ( ( 𝐹  “  { 𝐴 } )  =  { 𝑥 }  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  𝑥  ∈  { 𝑥 } ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( ( 𝐹  “  { 𝐴 } )  =  { 𝑥 }  →  𝑥  ∈  ( 𝐹  “  { 𝐴 } ) ) | 
						
							| 5 |  | n0i | ⊢ ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  →  ¬  ( 𝐹  “  { 𝐴 } )  =  ∅ ) | 
						
							| 6 |  | snprc | ⊢ ( ¬  𝐴  ∈  V  ↔  { 𝐴 }  =  ∅ ) | 
						
							| 7 | 6 | biimpi | ⊢ ( ¬  𝐴  ∈  V  →  { 𝐴 }  =  ∅ ) | 
						
							| 8 | 7 | imaeq2d | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐹  “  { 𝐴 } )  =  ( 𝐹  “  ∅ ) ) | 
						
							| 9 |  | ima0 | ⊢ ( 𝐹  “  ∅ )  =  ∅ | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐹  “  { 𝐴 } )  =  ∅ ) | 
						
							| 11 | 5 10 | nsyl2 | ⊢ ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  →  𝐴  ∈  V ) | 
						
							| 12 | 4 11 | syl | ⊢ ( ( 𝐹  “  { 𝐴 } )  =  { 𝑥 }  →  𝐴  ∈  V ) | 
						
							| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝐹  “  { 𝐴 } )  =  { 𝑥 }  →  𝐴  ∈  V ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ) | 
						
							| 15 |  | sneq | ⊢ ( 𝑦  =  𝐴  →  { 𝑦 }  =  { 𝐴 } ) | 
						
							| 16 | 15 | imaeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝐹  “  { 𝑦 } )  =  ( 𝐹  “  { 𝐴 } ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝐹  “  { 𝑦 } )  =  { 𝑥 }  ↔  ( 𝐹  “  { 𝐴 } )  =  { 𝑥 } ) ) | 
						
							| 18 | 17 | exbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑥 ( 𝐹  “  { 𝑦 } )  =  { 𝑥 }  ↔  ∃ 𝑥 ( 𝐹  “  { 𝐴 } )  =  { 𝑥 } ) ) | 
						
							| 19 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 20 | 19 | eldm | ⊢ ( 𝑦  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃ 𝑧 𝑦 ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) 𝑧 ) | 
						
							| 21 |  | brxp | ⊢ ( 𝑦 ( V  ×   Singletons  ) 𝑧  ↔  ( 𝑦  ∈  V  ∧  𝑧  ∈   Singletons  ) ) | 
						
							| 22 | 19 21 | mpbiran | ⊢ ( 𝑦 ( V  ×   Singletons  ) 𝑧  ↔  𝑧  ∈   Singletons  ) | 
						
							| 23 |  | elsingles | ⊢ ( 𝑧  ∈   Singletons   ↔  ∃ 𝑥 𝑧  =  { 𝑥 } ) | 
						
							| 24 | 22 23 | bitri | ⊢ ( 𝑦 ( V  ×   Singletons  ) 𝑧  ↔  ∃ 𝑥 𝑧  =  { 𝑥 } ) | 
						
							| 25 | 24 | anbi2i | ⊢ ( ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑦 ( V  ×   Singletons  ) 𝑧 )  ↔  ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  ∃ 𝑥 𝑧  =  { 𝑥 } ) ) | 
						
							| 26 |  | brin | ⊢ ( 𝑦 ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) 𝑧  ↔  ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑦 ( V  ×   Singletons  ) 𝑧 ) ) | 
						
							| 27 |  | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } )  ↔  ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  ∃ 𝑥 𝑧  =  { 𝑥 } ) ) | 
						
							| 28 | 25 26 27 | 3bitr4i | ⊢ ( 𝑦 ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) 𝑧  ↔  ∃ 𝑥 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } ) ) | 
						
							| 29 | 28 | exbii | ⊢ ( ∃ 𝑧 𝑦 ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) 𝑧  ↔  ∃ 𝑧 ∃ 𝑥 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } ) ) | 
						
							| 30 |  | excom | ⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } )  ↔  ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } ) ) | 
						
							| 31 | 29 30 | bitri | ⊢ ( ∃ 𝑧 𝑦 ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) 𝑧  ↔  ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } ) ) | 
						
							| 32 |  | exancom | ⊢ ( ∃ 𝑧 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } )  ↔  ∃ 𝑧 ( 𝑧  =  { 𝑥 }  ∧  𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧 ) ) | 
						
							| 33 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 34 |  | breq2 | ⊢ ( 𝑧  =  { 𝑥 }  →  ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ↔  𝑦 ( Image 𝐹  ∘  Singleton ) { 𝑥 } ) ) | 
						
							| 35 | 33 34 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧  =  { 𝑥 }  ∧  𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧 )  ↔  𝑦 ( Image 𝐹  ∘  Singleton ) { 𝑥 } ) | 
						
							| 36 | 19 33 | brco | ⊢ ( 𝑦 ( Image 𝐹  ∘  Singleton ) { 𝑥 }  ↔  ∃ 𝑧 ( 𝑦 Singleton 𝑧  ∧  𝑧 Image 𝐹 { 𝑥 } ) ) | 
						
							| 37 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 38 | 19 37 | brsingle | ⊢ ( 𝑦 Singleton 𝑧  ↔  𝑧  =  { 𝑦 } ) | 
						
							| 39 | 38 | anbi1i | ⊢ ( ( 𝑦 Singleton 𝑧  ∧  𝑧 Image 𝐹 { 𝑥 } )  ↔  ( 𝑧  =  { 𝑦 }  ∧  𝑧 Image 𝐹 { 𝑥 } ) ) | 
						
							| 40 | 39 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦 Singleton 𝑧  ∧  𝑧 Image 𝐹 { 𝑥 } )  ↔  ∃ 𝑧 ( 𝑧  =  { 𝑦 }  ∧  𝑧 Image 𝐹 { 𝑥 } ) ) | 
						
							| 41 |  | vsnex | ⊢ { 𝑦 }  ∈  V | 
						
							| 42 |  | breq1 | ⊢ ( 𝑧  =  { 𝑦 }  →  ( 𝑧 Image 𝐹 { 𝑥 }  ↔  { 𝑦 } Image 𝐹 { 𝑥 } ) ) | 
						
							| 43 | 41 42 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧  =  { 𝑦 }  ∧  𝑧 Image 𝐹 { 𝑥 } )  ↔  { 𝑦 } Image 𝐹 { 𝑥 } ) | 
						
							| 44 | 41 33 | brimage | ⊢ ( { 𝑦 } Image 𝐹 { 𝑥 }  ↔  { 𝑥 }  =  ( 𝐹  “  { 𝑦 } ) ) | 
						
							| 45 |  | eqcom | ⊢ ( { 𝑥 }  =  ( 𝐹  “  { 𝑦 } )  ↔  ( 𝐹  “  { 𝑦 } )  =  { 𝑥 } ) | 
						
							| 46 | 43 44 45 | 3bitri | ⊢ ( ∃ 𝑧 ( 𝑧  =  { 𝑦 }  ∧  𝑧 Image 𝐹 { 𝑥 } )  ↔  ( 𝐹  “  { 𝑦 } )  =  { 𝑥 } ) | 
						
							| 47 | 36 40 46 | 3bitri | ⊢ ( 𝑦 ( Image 𝐹  ∘  Singleton ) { 𝑥 }  ↔  ( 𝐹  “  { 𝑦 } )  =  { 𝑥 } ) | 
						
							| 48 | 32 35 47 | 3bitri | ⊢ ( ∃ 𝑧 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } )  ↔  ( 𝐹  “  { 𝑦 } )  =  { 𝑥 } ) | 
						
							| 49 | 48 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹  ∘  Singleton ) 𝑧  ∧  𝑧  =  { 𝑥 } )  ↔  ∃ 𝑥 ( 𝐹  “  { 𝑦 } )  =  { 𝑥 } ) | 
						
							| 50 | 20 31 49 | 3bitri | ⊢ ( 𝑦  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃ 𝑥 ( 𝐹  “  { 𝑦 } )  =  { 𝑥 } ) | 
						
							| 51 | 14 18 50 | vtoclbg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃ 𝑥 ( 𝐹  “  { 𝐴 } )  =  { 𝑥 } ) ) | 
						
							| 52 | 1 13 51 | pm5.21nii | ⊢ ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃ 𝑥 ( 𝐹  “  { 𝐴 } )  =  { 𝑥 } ) |