Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → 𝐴 ∈ V ) |
2 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
3 |
|
eleq2 |
⊢ ( ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝑥 ∈ { 𝑥 } ) ) |
4 |
2 3
|
mpbiri |
⊢ ( ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) |
5 |
|
n0i |
⊢ ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) → ¬ ( 𝐹 “ { 𝐴 } ) = ∅ ) |
6 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
7 |
6
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
8 |
7
|
imaeq2d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ( 𝐹 “ ∅ ) ) |
9 |
|
ima0 |
⊢ ( 𝐹 “ ∅ ) = ∅ |
10 |
8 9
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 “ { 𝐴 } ) = ∅ ) |
11 |
5 10
|
nsyl2 |
⊢ ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) → 𝐴 ∈ V ) |
12 |
4 11
|
syl |
⊢ ( ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → 𝐴 ∈ V ) |
13 |
12
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } → 𝐴 ∈ V ) |
14 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ) |
15 |
|
sneq |
⊢ ( 𝑦 = 𝐴 → { 𝑦 } = { 𝐴 } ) |
16 |
15
|
imaeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 “ { 𝑦 } ) = ( 𝐹 “ { 𝐴 } ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ↔ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) ) |
18 |
17
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) ) |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
19
|
eldm |
⊢ ( 𝑦 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑧 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ) |
21 |
|
brxp |
⊢ ( 𝑦 ( V × Singletons ) 𝑧 ↔ ( 𝑦 ∈ V ∧ 𝑧 ∈ Singletons ) ) |
22 |
19 21
|
mpbiran |
⊢ ( 𝑦 ( V × Singletons ) 𝑧 ↔ 𝑧 ∈ Singletons ) |
23 |
|
elsingles |
⊢ ( 𝑧 ∈ Singletons ↔ ∃ 𝑥 𝑧 = { 𝑥 } ) |
24 |
22 23
|
bitri |
⊢ ( 𝑦 ( V × Singletons ) 𝑧 ↔ ∃ 𝑥 𝑧 = { 𝑥 } ) |
25 |
24
|
anbi2i |
⊢ ( ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑦 ( V × Singletons ) 𝑧 ) ↔ ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ ∃ 𝑥 𝑧 = { 𝑥 } ) ) |
26 |
|
brin |
⊢ ( 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑦 ( V × Singletons ) 𝑧 ) ) |
27 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ ∃ 𝑥 𝑧 = { 𝑥 } ) ) |
28 |
25 26 27
|
3bitr4i |
⊢ ( 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
29 |
28
|
exbii |
⊢ ( ∃ 𝑧 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
30 |
|
excom |
⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
31 |
29 30
|
bitri |
⊢ ( ∃ 𝑧 𝑦 ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) 𝑧 ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ) |
32 |
|
exancom |
⊢ ( ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ∃ 𝑧 ( 𝑧 = { 𝑥 } ∧ 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ) ) |
33 |
|
snex |
⊢ { 𝑥 } ∈ V |
34 |
|
breq2 |
⊢ ( 𝑧 = { 𝑥 } → ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ↔ 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ) ) |
35 |
33 34
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = { 𝑥 } ∧ 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ) ↔ 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ) |
36 |
19 33
|
brco |
⊢ ( 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ↔ ∃ 𝑧 ( 𝑦 Singleton 𝑧 ∧ 𝑧 Image 𝐹 { 𝑥 } ) ) |
37 |
|
vex |
⊢ 𝑧 ∈ V |
38 |
19 37
|
brsingle |
⊢ ( 𝑦 Singleton 𝑧 ↔ 𝑧 = { 𝑦 } ) |
39 |
38
|
anbi1i |
⊢ ( ( 𝑦 Singleton 𝑧 ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ) |
40 |
39
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑦 Singleton 𝑧 ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ ∃ 𝑧 ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ) |
41 |
|
snex |
⊢ { 𝑦 } ∈ V |
42 |
|
breq1 |
⊢ ( 𝑧 = { 𝑦 } → ( 𝑧 Image 𝐹 { 𝑥 } ↔ { 𝑦 } Image 𝐹 { 𝑥 } ) ) |
43 |
41 42
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ { 𝑦 } Image 𝐹 { 𝑥 } ) |
44 |
41 33
|
brimage |
⊢ ( { 𝑦 } Image 𝐹 { 𝑥 } ↔ { 𝑥 } = ( 𝐹 “ { 𝑦 } ) ) |
45 |
|
eqcom |
⊢ ( { 𝑥 } = ( 𝐹 “ { 𝑦 } ) ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
46 |
43 44 45
|
3bitri |
⊢ ( ∃ 𝑧 ( 𝑧 = { 𝑦 } ∧ 𝑧 Image 𝐹 { 𝑥 } ) ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
47 |
36 40 46
|
3bitri |
⊢ ( 𝑦 ( Image 𝐹 ∘ Singleton ) { 𝑥 } ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
48 |
32 35 47
|
3bitri |
⊢ ( ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
49 |
48
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑦 ( Image 𝐹 ∘ Singleton ) 𝑧 ∧ 𝑧 = { 𝑥 } ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
50 |
20 31 49
|
3bitri |
⊢ ( 𝑦 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝑦 } ) = { 𝑥 } ) |
51 |
14 18 50
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) ) |
52 |
1 13 51
|
pm5.21nii |
⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) |