Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> A e. _V ) |
2 |
|
vsnid |
|- x e. { x } |
3 |
|
eleq2 |
|- ( ( F " { A } ) = { x } -> ( x e. ( F " { A } ) <-> x e. { x } ) ) |
4 |
2 3
|
mpbiri |
|- ( ( F " { A } ) = { x } -> x e. ( F " { A } ) ) |
5 |
|
n0i |
|- ( x e. ( F " { A } ) -> -. ( F " { A } ) = (/) ) |
6 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
7 |
6
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
8 |
7
|
imaeq2d |
|- ( -. A e. _V -> ( F " { A } ) = ( F " (/) ) ) |
9 |
|
ima0 |
|- ( F " (/) ) = (/) |
10 |
8 9
|
eqtrdi |
|- ( -. A e. _V -> ( F " { A } ) = (/) ) |
11 |
5 10
|
nsyl2 |
|- ( x e. ( F " { A } ) -> A e. _V ) |
12 |
4 11
|
syl |
|- ( ( F " { A } ) = { x } -> A e. _V ) |
13 |
12
|
exlimiv |
|- ( E. x ( F " { A } ) = { x } -> A e. _V ) |
14 |
|
eleq1 |
|- ( y = A -> ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ) |
15 |
|
sneq |
|- ( y = A -> { y } = { A } ) |
16 |
15
|
imaeq2d |
|- ( y = A -> ( F " { y } ) = ( F " { A } ) ) |
17 |
16
|
eqeq1d |
|- ( y = A -> ( ( F " { y } ) = { x } <-> ( F " { A } ) = { x } ) ) |
18 |
17
|
exbidv |
|- ( y = A -> ( E. x ( F " { y } ) = { x } <-> E. x ( F " { A } ) = { x } ) ) |
19 |
|
vex |
|- y e. _V |
20 |
19
|
eldm |
|- ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z ) |
21 |
|
brxp |
|- ( y ( _V X. Singletons ) z <-> ( y e. _V /\ z e. Singletons ) ) |
22 |
19 21
|
mpbiran |
|- ( y ( _V X. Singletons ) z <-> z e. Singletons ) |
23 |
|
elsingles |
|- ( z e. Singletons <-> E. x z = { x } ) |
24 |
22 23
|
bitri |
|- ( y ( _V X. Singletons ) z <-> E. x z = { x } ) |
25 |
24
|
anbi2i |
|- ( ( y ( Image F o. Singleton ) z /\ y ( _V X. Singletons ) z ) <-> ( y ( Image F o. Singleton ) z /\ E. x z = { x } ) ) |
26 |
|
brin |
|- ( y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> ( y ( Image F o. Singleton ) z /\ y ( _V X. Singletons ) z ) ) |
27 |
|
19.42v |
|- ( E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> ( y ( Image F o. Singleton ) z /\ E. x z = { x } ) ) |
28 |
25 26 27
|
3bitr4i |
|- ( y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
29 |
28
|
exbii |
|- ( E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. z E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
30 |
|
excom |
|- ( E. z E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
31 |
29 30
|
bitri |
|- ( E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) ) |
32 |
|
exancom |
|- ( E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. z ( z = { x } /\ y ( Image F o. Singleton ) z ) ) |
33 |
|
snex |
|- { x } e. _V |
34 |
|
breq2 |
|- ( z = { x } -> ( y ( Image F o. Singleton ) z <-> y ( Image F o. Singleton ) { x } ) ) |
35 |
33 34
|
ceqsexv |
|- ( E. z ( z = { x } /\ y ( Image F o. Singleton ) z ) <-> y ( Image F o. Singleton ) { x } ) |
36 |
19 33
|
brco |
|- ( y ( Image F o. Singleton ) { x } <-> E. z ( y Singleton z /\ z Image F { x } ) ) |
37 |
|
vex |
|- z e. _V |
38 |
19 37
|
brsingle |
|- ( y Singleton z <-> z = { y } ) |
39 |
38
|
anbi1i |
|- ( ( y Singleton z /\ z Image F { x } ) <-> ( z = { y } /\ z Image F { x } ) ) |
40 |
39
|
exbii |
|- ( E. z ( y Singleton z /\ z Image F { x } ) <-> E. z ( z = { y } /\ z Image F { x } ) ) |
41 |
|
snex |
|- { y } e. _V |
42 |
|
breq1 |
|- ( z = { y } -> ( z Image F { x } <-> { y } Image F { x } ) ) |
43 |
41 42
|
ceqsexv |
|- ( E. z ( z = { y } /\ z Image F { x } ) <-> { y } Image F { x } ) |
44 |
41 33
|
brimage |
|- ( { y } Image F { x } <-> { x } = ( F " { y } ) ) |
45 |
|
eqcom |
|- ( { x } = ( F " { y } ) <-> ( F " { y } ) = { x } ) |
46 |
43 44 45
|
3bitri |
|- ( E. z ( z = { y } /\ z Image F { x } ) <-> ( F " { y } ) = { x } ) |
47 |
36 40 46
|
3bitri |
|- ( y ( Image F o. Singleton ) { x } <-> ( F " { y } ) = { x } ) |
48 |
32 35 47
|
3bitri |
|- ( E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> ( F " { y } ) = { x } ) |
49 |
48
|
exbii |
|- ( E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. x ( F " { y } ) = { x } ) |
50 |
20 31 49
|
3bitri |
|- ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { y } ) = { x } ) |
51 |
14 18 50
|
vtoclbg |
|- ( A e. _V -> ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) ) |
52 |
1 13 51
|
pm5.21nii |
|- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) |