| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> A e. _V ) | 
						
							| 2 |  | vsnid |  |-  x e. { x } | 
						
							| 3 |  | eleq2 |  |-  ( ( F " { A } ) = { x } -> ( x e. ( F " { A } ) <-> x e. { x } ) ) | 
						
							| 4 | 2 3 | mpbiri |  |-  ( ( F " { A } ) = { x } -> x e. ( F " { A } ) ) | 
						
							| 5 |  | n0i |  |-  ( x e. ( F " { A } ) -> -. ( F " { A } ) = (/) ) | 
						
							| 6 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 7 | 6 | biimpi |  |-  ( -. A e. _V -> { A } = (/) ) | 
						
							| 8 | 7 | imaeq2d |  |-  ( -. A e. _V -> ( F " { A } ) = ( F " (/) ) ) | 
						
							| 9 |  | ima0 |  |-  ( F " (/) ) = (/) | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( -. A e. _V -> ( F " { A } ) = (/) ) | 
						
							| 11 | 5 10 | nsyl2 |  |-  ( x e. ( F " { A } ) -> A e. _V ) | 
						
							| 12 | 4 11 | syl |  |-  ( ( F " { A } ) = { x } -> A e. _V ) | 
						
							| 13 | 12 | exlimiv |  |-  ( E. x ( F " { A } ) = { x } -> A e. _V ) | 
						
							| 14 |  | eleq1 |  |-  ( y = A -> ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ) | 
						
							| 15 |  | sneq |  |-  ( y = A -> { y } = { A } ) | 
						
							| 16 | 15 | imaeq2d |  |-  ( y = A -> ( F " { y } ) = ( F " { A } ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( y = A -> ( ( F " { y } ) = { x } <-> ( F " { A } ) = { x } ) ) | 
						
							| 18 | 17 | exbidv |  |-  ( y = A -> ( E. x ( F " { y } ) = { x } <-> E. x ( F " { A } ) = { x } ) ) | 
						
							| 19 |  | vex |  |-  y e. _V | 
						
							| 20 | 19 | eldm |  |-  ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z ) | 
						
							| 21 |  | brxp |  |-  ( y ( _V X. Singletons ) z <-> ( y e. _V /\ z e. Singletons ) ) | 
						
							| 22 | 19 21 | mpbiran |  |-  ( y ( _V X. Singletons ) z <-> z e. Singletons ) | 
						
							| 23 |  | elsingles |  |-  ( z e. Singletons <-> E. x z = { x } ) | 
						
							| 24 | 22 23 | bitri |  |-  ( y ( _V X. Singletons ) z <-> E. x z = { x } ) | 
						
							| 25 | 24 | anbi2i |  |-  ( ( y ( Image F o. Singleton ) z /\ y ( _V X. Singletons ) z ) <-> ( y ( Image F o. Singleton ) z /\ E. x z = { x } ) ) | 
						
							| 26 |  | brin |  |-  ( y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> ( y ( Image F o. Singleton ) z /\ y ( _V X. Singletons ) z ) ) | 
						
							| 27 |  | 19.42v |  |-  ( E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> ( y ( Image F o. Singleton ) z /\ E. x z = { x } ) ) | 
						
							| 28 | 25 26 27 | 3bitr4i |  |-  ( y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) ) | 
						
							| 29 | 28 | exbii |  |-  ( E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. z E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) ) | 
						
							| 30 |  | excom |  |-  ( E. z E. x ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) ) | 
						
							| 31 | 29 30 | bitri |  |-  ( E. z y ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) z <-> E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) ) | 
						
							| 32 |  | exancom |  |-  ( E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. z ( z = { x } /\ y ( Image F o. Singleton ) z ) ) | 
						
							| 33 |  | vsnex |  |-  { x } e. _V | 
						
							| 34 |  | breq2 |  |-  ( z = { x } -> ( y ( Image F o. Singleton ) z <-> y ( Image F o. Singleton ) { x } ) ) | 
						
							| 35 | 33 34 | ceqsexv |  |-  ( E. z ( z = { x } /\ y ( Image F o. Singleton ) z ) <-> y ( Image F o. Singleton ) { x } ) | 
						
							| 36 | 19 33 | brco |  |-  ( y ( Image F o. Singleton ) { x } <-> E. z ( y Singleton z /\ z Image F { x } ) ) | 
						
							| 37 |  | vex |  |-  z e. _V | 
						
							| 38 | 19 37 | brsingle |  |-  ( y Singleton z <-> z = { y } ) | 
						
							| 39 | 38 | anbi1i |  |-  ( ( y Singleton z /\ z Image F { x } ) <-> ( z = { y } /\ z Image F { x } ) ) | 
						
							| 40 | 39 | exbii |  |-  ( E. z ( y Singleton z /\ z Image F { x } ) <-> E. z ( z = { y } /\ z Image F { x } ) ) | 
						
							| 41 |  | vsnex |  |-  { y } e. _V | 
						
							| 42 |  | breq1 |  |-  ( z = { y } -> ( z Image F { x } <-> { y } Image F { x } ) ) | 
						
							| 43 | 41 42 | ceqsexv |  |-  ( E. z ( z = { y } /\ z Image F { x } ) <-> { y } Image F { x } ) | 
						
							| 44 | 41 33 | brimage |  |-  ( { y } Image F { x } <-> { x } = ( F " { y } ) ) | 
						
							| 45 |  | eqcom |  |-  ( { x } = ( F " { y } ) <-> ( F " { y } ) = { x } ) | 
						
							| 46 | 43 44 45 | 3bitri |  |-  ( E. z ( z = { y } /\ z Image F { x } ) <-> ( F " { y } ) = { x } ) | 
						
							| 47 | 36 40 46 | 3bitri |  |-  ( y ( Image F o. Singleton ) { x } <-> ( F " { y } ) = { x } ) | 
						
							| 48 | 32 35 47 | 3bitri |  |-  ( E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> ( F " { y } ) = { x } ) | 
						
							| 49 | 48 | exbii |  |-  ( E. x E. z ( y ( Image F o. Singleton ) z /\ z = { x } ) <-> E. x ( F " { y } ) = { x } ) | 
						
							| 50 | 20 31 49 | 3bitri |  |-  ( y e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { y } ) = { x } ) | 
						
							| 51 | 14 18 50 | vtoclbg |  |-  ( A e. _V -> ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) ) | 
						
							| 52 | 1 13 51 | pm5.21nii |  |-  ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) |