| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres |  |-  Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) | 
						
							| 2 |  | vex |  |-  z e. _V | 
						
							| 3 | 2 | brresi |  |-  ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z <-> ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F z ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z -> x F z ) | 
						
							| 5 |  | vex |  |-  y e. _V | 
						
							| 6 | 5 | brresi |  |-  ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y <-> ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F y ) ) | 
						
							| 7 |  | funpartlem |  |-  ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. w ( F " { x } ) = { w } ) | 
						
							| 8 | 7 | anbi1i |  |-  ( ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F y ) <-> ( E. w ( F " { x } ) = { w } /\ x F y ) ) | 
						
							| 9 | 6 8 | bitri |  |-  ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y <-> ( E. w ( F " { x } ) = { w } /\ x F y ) ) | 
						
							| 10 |  | df-br |  |-  ( x F y <-> <. x , y >. e. F ) | 
						
							| 11 |  | df-br |  |-  ( x F z <-> <. x , z >. e. F ) | 
						
							| 12 | 10 11 | anbi12i |  |-  ( ( x F y /\ x F z ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) | 
						
							| 13 |  | vex |  |-  x e. _V | 
						
							| 14 | 13 5 | elimasn |  |-  ( y e. ( F " { x } ) <-> <. x , y >. e. F ) | 
						
							| 15 | 13 2 | elimasn |  |-  ( z e. ( F " { x } ) <-> <. x , z >. e. F ) | 
						
							| 16 | 14 15 | anbi12i |  |-  ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) | 
						
							| 17 | 12 16 | bitr4i |  |-  ( ( x F y /\ x F z ) <-> ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) ) | 
						
							| 18 |  | eleq2 |  |-  ( ( F " { x } ) = { w } -> ( y e. ( F " { x } ) <-> y e. { w } ) ) | 
						
							| 19 |  | eleq2 |  |-  ( ( F " { x } ) = { w } -> ( z e. ( F " { x } ) <-> z e. { w } ) ) | 
						
							| 20 | 18 19 | anbi12d |  |-  ( ( F " { x } ) = { w } -> ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) <-> ( y e. { w } /\ z e. { w } ) ) ) | 
						
							| 21 |  | velsn |  |-  ( y e. { w } <-> y = w ) | 
						
							| 22 |  | velsn |  |-  ( z e. { w } <-> z = w ) | 
						
							| 23 |  | equtr2 |  |-  ( ( y = w /\ z = w ) -> y = z ) | 
						
							| 24 | 21 22 23 | syl2anb |  |-  ( ( y e. { w } /\ z e. { w } ) -> y = z ) | 
						
							| 25 | 20 24 | biimtrdi |  |-  ( ( F " { x } ) = { w } -> ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) -> y = z ) ) | 
						
							| 26 | 17 25 | biimtrid |  |-  ( ( F " { x } ) = { w } -> ( ( x F y /\ x F z ) -> y = z ) ) | 
						
							| 27 | 26 | exlimiv |  |-  ( E. w ( F " { x } ) = { w } -> ( ( x F y /\ x F z ) -> y = z ) ) | 
						
							| 28 | 27 | impl |  |-  ( ( ( E. w ( F " { x } ) = { w } /\ x F y ) /\ x F z ) -> y = z ) | 
						
							| 29 | 9 28 | sylanb |  |-  ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x F z ) -> y = z ) | 
						
							| 30 | 4 29 | sylan2 |  |-  ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) | 
						
							| 31 | 30 | gen2 |  |-  A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) | 
						
							| 32 | 31 | ax-gen |  |-  A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) | 
						
							| 33 |  | df-funpart |  |-  Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) | 
						
							| 34 | 33 | funeqi |  |-  ( Fun Funpart F <-> Fun ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ) | 
						
							| 35 |  | dffun2 |  |-  ( Fun ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) <-> ( Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) /\ A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) ) ) | 
						
							| 36 | 34 35 | bitri |  |-  ( Fun Funpart F <-> ( Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) /\ A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) ) ) | 
						
							| 37 | 1 32 36 | mpbir2an |  |-  Fun Funpart F |