| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) |
| 2 |
|
vex |
|- z e. _V |
| 3 |
2
|
brresi |
|- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z <-> ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F z ) ) |
| 4 |
3
|
simprbi |
|- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z -> x F z ) |
| 5 |
|
vex |
|- y e. _V |
| 6 |
5
|
brresi |
|- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y <-> ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F y ) ) |
| 7 |
|
funpartlem |
|- ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. w ( F " { x } ) = { w } ) |
| 8 |
7
|
anbi1i |
|- ( ( x e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) /\ x F y ) <-> ( E. w ( F " { x } ) = { w } /\ x F y ) ) |
| 9 |
6 8
|
bitri |
|- ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y <-> ( E. w ( F " { x } ) = { w } /\ x F y ) ) |
| 10 |
|
df-br |
|- ( x F y <-> <. x , y >. e. F ) |
| 11 |
|
df-br |
|- ( x F z <-> <. x , z >. e. F ) |
| 12 |
10 11
|
anbi12i |
|- ( ( x F y /\ x F z ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) |
| 13 |
|
vex |
|- x e. _V |
| 14 |
13 5
|
elimasn |
|- ( y e. ( F " { x } ) <-> <. x , y >. e. F ) |
| 15 |
13 2
|
elimasn |
|- ( z e. ( F " { x } ) <-> <. x , z >. e. F ) |
| 16 |
14 15
|
anbi12i |
|- ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) |
| 17 |
12 16
|
bitr4i |
|- ( ( x F y /\ x F z ) <-> ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) ) |
| 18 |
|
eleq2 |
|- ( ( F " { x } ) = { w } -> ( y e. ( F " { x } ) <-> y e. { w } ) ) |
| 19 |
|
eleq2 |
|- ( ( F " { x } ) = { w } -> ( z e. ( F " { x } ) <-> z e. { w } ) ) |
| 20 |
18 19
|
anbi12d |
|- ( ( F " { x } ) = { w } -> ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) <-> ( y e. { w } /\ z e. { w } ) ) ) |
| 21 |
|
velsn |
|- ( y e. { w } <-> y = w ) |
| 22 |
|
velsn |
|- ( z e. { w } <-> z = w ) |
| 23 |
|
equtr2 |
|- ( ( y = w /\ z = w ) -> y = z ) |
| 24 |
21 22 23
|
syl2anb |
|- ( ( y e. { w } /\ z e. { w } ) -> y = z ) |
| 25 |
20 24
|
biimtrdi |
|- ( ( F " { x } ) = { w } -> ( ( y e. ( F " { x } ) /\ z e. ( F " { x } ) ) -> y = z ) ) |
| 26 |
17 25
|
biimtrid |
|- ( ( F " { x } ) = { w } -> ( ( x F y /\ x F z ) -> y = z ) ) |
| 27 |
26
|
exlimiv |
|- ( E. w ( F " { x } ) = { w } -> ( ( x F y /\ x F z ) -> y = z ) ) |
| 28 |
27
|
impl |
|- ( ( ( E. w ( F " { x } ) = { w } /\ x F y ) /\ x F z ) -> y = z ) |
| 29 |
9 28
|
sylanb |
|- ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x F z ) -> y = z ) |
| 30 |
4 29
|
sylan2 |
|- ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) |
| 31 |
30
|
gen2 |
|- A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) |
| 32 |
31
|
ax-gen |
|- A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) |
| 33 |
|
df-funpart |
|- Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) |
| 34 |
33
|
funeqi |
|- ( Fun Funpart F <-> Fun ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ) |
| 35 |
|
dffun2 |
|- ( Fun ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) <-> ( Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) /\ A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) ) ) |
| 36 |
34 35
|
bitri |
|- ( Fun Funpart F <-> ( Rel ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) /\ A. x A. y A. z ( ( x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) y /\ x ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) z ) -> y = z ) ) ) |
| 37 |
1 32 36
|
mpbir2an |
|- Fun Funpart F |