| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-funpart | ⊢ Funpart 𝐹  =  ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) | 
						
							| 2 | 1 | fveq1i | ⊢ ( Funpart 𝐹 ‘ 𝐴 )  =  ( ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ‘ 𝐴 ) | 
						
							| 3 |  | fvres | ⊢ ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  ( ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 4 |  | nfvres | ⊢ ( ¬  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  ( ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ‘ 𝐴 )  =  ∅ ) | 
						
							| 5 |  | funpartlem | ⊢ ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃ 𝑥 ( 𝐹  “  { 𝐴 } )  =  { 𝑥 } ) | 
						
							| 6 |  | eusn | ⊢ ( ∃! 𝑥 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  ∃ 𝑥 ( 𝐹  “  { 𝐴 } )  =  { 𝑥 } ) | 
						
							| 7 | 5 6 | bitr4i | ⊢ ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃! 𝑥 𝑥  ∈  ( 𝐹  “  { 𝐴 } ) ) | 
						
							| 8 |  | elimasng | ⊢ ( ( 𝐴  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  〈 𝐴 ,  𝑥 〉  ∈  𝐹 ) ) | 
						
							| 9 | 8 | elvd | ⊢ ( 𝐴  ∈  V  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  〈 𝐴 ,  𝑥 〉  ∈  𝐹 ) ) | 
						
							| 10 |  | df-br | ⊢ ( 𝐴 𝐹 𝑥  ↔  〈 𝐴 ,  𝑥 〉  ∈  𝐹 ) | 
						
							| 11 | 9 10 | bitr4di | ⊢ ( 𝐴  ∈  V  →  ( 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 12 | 11 | eubidv | ⊢ ( 𝐴  ∈  V  →  ( ∃! 𝑥 𝑥  ∈  ( 𝐹  “  { 𝐴 } )  ↔  ∃! 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 13 | 7 12 | bitrid | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ∃! 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝐴  ∈  V  →  ( ¬  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  ↔  ¬  ∃! 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 15 |  | tz6.12-2 | ⊢ ( ¬  ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 16 | 14 15 | biimtrdi | ⊢ ( 𝐴  ∈  V  →  ( ¬  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) ) | 
						
							| 17 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 18 | 17 | a1d | ⊢ ( ¬  𝐴  ∈  V  →  ( ¬  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) ) | 
						
							| 19 | 16 18 | pm2.61i | ⊢ ( ¬  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 20 | 4 19 | eqtr4d | ⊢ ( ¬  𝐴  ∈  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) )  →  ( ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 21 | 3 20 | pm2.61i | ⊢ ( ( 𝐹  ↾  dom  ( ( Image 𝐹  ∘  Singleton )  ∩  ( V  ×   Singletons  ) ) ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) | 
						
							| 22 | 2 21 | eqtri | ⊢ ( Funpart 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) |