| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funpartfun |
⊢ Fun Funpart 𝐹 |
| 2 |
|
funfn |
⊢ ( Fun Funpart 𝐹 ↔ Funpart 𝐹 Fn dom Funpart 𝐹 ) |
| 3 |
1 2
|
mpbi |
⊢ Funpart 𝐹 Fn dom Funpart 𝐹 |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
fconst |
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } |
| 6 |
|
ffn |
⊢ ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } → ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) |
| 8 |
3 7
|
pm3.2i |
⊢ ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) |
| 9 |
|
disjdif |
⊢ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ |
| 10 |
|
fnun |
⊢ ( ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) ∧ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ) → ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
| 11 |
8 9 10
|
mp2an |
⊢ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) |
| 12 |
|
df-fullfun |
⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) |
| 13 |
12
|
fneq1i |
⊢ ( FullFun 𝐹 Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn V ) |
| 14 |
|
unvdif |
⊢ ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) = V |
| 15 |
14
|
eqcomi |
⊢ V = ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) |
| 16 |
15
|
fneq2i |
⊢ ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
| 17 |
13 16
|
bitri |
⊢ ( FullFun 𝐹 Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
| 18 |
11 17
|
mpbir |
⊢ FullFun 𝐹 Fn V |