| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funpartfun | ⊢ Fun  Funpart 𝐹 | 
						
							| 2 |  | funfn | ⊢ ( Fun  Funpart 𝐹  ↔  Funpart 𝐹  Fn  dom  Funpart 𝐹 ) | 
						
							| 3 | 1 2 | mpbi | ⊢ Funpart 𝐹  Fn  dom  Funpart 𝐹 | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 | 4 | fconst | ⊢ ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) : ( V  ∖  dom  Funpart 𝐹 ) ⟶ { ∅ } | 
						
							| 6 |  | ffn | ⊢ ( ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) : ( V  ∖  dom  Funpart 𝐹 ) ⟶ { ∅ }  →  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 ) | 
						
							| 8 | 3 7 | pm3.2i | ⊢ ( Funpart 𝐹  Fn  dom  Funpart 𝐹  ∧  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 ) ) | 
						
							| 9 |  | disjdif | ⊢ ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅ | 
						
							| 10 |  | fnun | ⊢ ( ( ( Funpart 𝐹  Fn  dom  Funpart 𝐹  ∧  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } )  Fn  ( V  ∖  dom  Funpart 𝐹 ) )  ∧  ( dom  Funpart 𝐹  ∩  ( V  ∖  dom  Funpart 𝐹 ) )  =  ∅ )  →  ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) )  Fn  ( dom  Funpart 𝐹  ∪  ( V  ∖  dom  Funpart 𝐹 ) ) ) | 
						
							| 11 | 8 9 10 | mp2an | ⊢ ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) )  Fn  ( dom  Funpart 𝐹  ∪  ( V  ∖  dom  Funpart 𝐹 ) ) | 
						
							| 12 |  | df-fullfun | ⊢ FullFun 𝐹  =  ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) ) | 
						
							| 13 | 12 | fneq1i | ⊢ ( FullFun 𝐹  Fn  V  ↔  ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) )  Fn  V ) | 
						
							| 14 |  | unvdif | ⊢ ( dom  Funpart 𝐹  ∪  ( V  ∖  dom  Funpart 𝐹 ) )  =  V | 
						
							| 15 | 14 | eqcomi | ⊢ V  =  ( dom  Funpart 𝐹  ∪  ( V  ∖  dom  Funpart 𝐹 ) ) | 
						
							| 16 | 15 | fneq2i | ⊢ ( ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) )  Fn  V  ↔  ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) )  Fn  ( dom  Funpart 𝐹  ∪  ( V  ∖  dom  Funpart 𝐹 ) ) ) | 
						
							| 17 | 13 16 | bitri | ⊢ ( FullFun 𝐹  Fn  V  ↔  ( Funpart 𝐹  ∪  ( ( V  ∖  dom  Funpart 𝐹 )  ×  { ∅ } ) )  Fn  ( dom  Funpart 𝐹  ∪  ( V  ∖  dom  Funpart 𝐹 ) ) ) | 
						
							| 18 | 11 17 | mpbir | ⊢ FullFun 𝐹  Fn  V |