Step |
Hyp |
Ref |
Expression |
1 |
|
funpartfun |
⊢ Fun Funpart 𝐹 |
2 |
|
funfn |
⊢ ( Fun Funpart 𝐹 ↔ Funpart 𝐹 Fn dom Funpart 𝐹 ) |
3 |
1 2
|
mpbi |
⊢ Funpart 𝐹 Fn dom Funpart 𝐹 |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
4
|
fconst |
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } |
6 |
|
ffn |
⊢ ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } → ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) |
8 |
3 7
|
pm3.2i |
⊢ ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) |
9 |
|
disjdif |
⊢ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ |
10 |
|
fnun |
⊢ ( ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) ∧ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ) → ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
11 |
8 9 10
|
mp2an |
⊢ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) |
12 |
|
df-fullfun |
⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) |
13 |
12
|
fneq1i |
⊢ ( FullFun 𝐹 Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn V ) |
14 |
|
unvdif |
⊢ ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) = V |
15 |
14
|
eqcomi |
⊢ V = ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) |
16 |
15
|
fneq2i |
⊢ ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
17 |
13 16
|
bitri |
⊢ ( FullFun 𝐹 Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
18 |
11 17
|
mpbir |
⊢ FullFun 𝐹 Fn V |