Step |
Hyp |
Ref |
Expression |
1 |
|
brapply.1 |
⊢ 𝐴 ∈ V |
2 |
|
brapply.2 |
⊢ 𝐵 ∈ V |
3 |
|
brapply.3 |
⊢ 𝐶 ∈ V |
4 |
|
snex |
⊢ { ( 𝐴 “ { 𝐵 } ) } ∈ V |
5 |
4
|
inex1 |
⊢ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∈ V |
6 |
|
unieq |
⊢ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) → ∪ 𝑥 = ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
7 |
6
|
unieqd |
⊢ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) → ∪ ∪ 𝑥 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) → ( 𝐶 = ∪ ∪ 𝑥 ↔ 𝐶 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) ) |
9 |
5 8
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ↔ 𝐶 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
10 |
|
df-apply |
⊢ Apply = ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |
11 |
10
|
breqi |
⊢ ( 〈 𝐴 , 𝐵 〉 Apply 𝐶 ↔ 〈 𝐴 , 𝐵 〉 ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) 𝐶 ) |
12 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
13 |
12 3
|
brco |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) 𝐶 ↔ ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ∧ 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
12 14
|
brco |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ↔ ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ∧ 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ) ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
12 16
|
brco |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ↔ ∃ 𝑧 ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ) |
18 |
|
vex |
⊢ 𝑧 ∈ V |
19 |
1 2 18
|
brpprod3a |
⊢ ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ) |
20 |
|
3anrot |
⊢ ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ↔ ( 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
21 |
|
vex |
⊢ 𝑎 ∈ V |
22 |
21
|
ideq |
⊢ ( 𝐴 I 𝑎 ↔ 𝐴 = 𝑎 ) |
23 |
|
eqcom |
⊢ ( 𝐴 = 𝑎 ↔ 𝑎 = 𝐴 ) |
24 |
22 23
|
bitri |
⊢ ( 𝐴 I 𝑎 ↔ 𝑎 = 𝐴 ) |
25 |
|
vex |
⊢ 𝑏 ∈ V |
26 |
2 25
|
brsingle |
⊢ ( 𝐵 Singleton 𝑏 ↔ 𝑏 = { 𝐵 } ) |
27 |
|
biid |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 𝑧 = 〈 𝑎 , 𝑏 〉 ) |
28 |
24 26 27
|
3anbi123i |
⊢ ( ( 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
29 |
20 28
|
bitri |
⊢ ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
30 |
29
|
2exbii |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
31 |
|
snex |
⊢ { 𝐵 } ∈ V |
32 |
|
opeq1 |
⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , 𝑏 〉 = 〈 𝐴 , 𝑏 〉 ) |
33 |
32
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 𝑧 = 〈 𝐴 , 𝑏 〉 ) ) |
34 |
|
opeq2 |
⊢ ( 𝑏 = { 𝐵 } → 〈 𝐴 , 𝑏 〉 = 〈 𝐴 , { 𝐵 } 〉 ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑏 = { 𝐵 } → ( 𝑧 = 〈 𝐴 , 𝑏 〉 ↔ 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ) ) |
36 |
1 31 33 35
|
ceqsex2v |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ↔ 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ) |
37 |
19 30 36
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ↔ 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ) |
38 |
37
|
anbi1i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ) |
39 |
38
|
exbii |
⊢ ( ∃ 𝑧 ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ) |
40 |
|
opex |
⊢ 〈 𝐴 , { 𝐵 } 〉 ∈ V |
41 |
|
breq1 |
⊢ ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 → ( 𝑧 ( Singleton ∘ Img ) 𝑦 ↔ 〈 𝐴 , { 𝐵 } 〉 ( Singleton ∘ Img ) 𝑦 ) ) |
42 |
40 41
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ 〈 𝐴 , { 𝐵 } 〉 ( Singleton ∘ Img ) 𝑦 ) |
43 |
40 16
|
brco |
⊢ ( 〈 𝐴 , { 𝐵 } 〉 ( Singleton ∘ Img ) 𝑦 ↔ ∃ 𝑥 ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ) |
44 |
1 31 14
|
brimg |
⊢ ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ↔ 𝑥 = ( 𝐴 “ { 𝐵 } ) ) |
45 |
14 16
|
brsingle |
⊢ ( 𝑥 Singleton 𝑦 ↔ 𝑦 = { 𝑥 } ) |
46 |
44 45
|
anbi12i |
⊢ ( ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ↔ ( 𝑥 = ( 𝐴 “ { 𝐵 } ) ∧ 𝑦 = { 𝑥 } ) ) |
47 |
46
|
exbii |
⊢ ( ∃ 𝑥 ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝐴 “ { 𝐵 } ) ∧ 𝑦 = { 𝑥 } ) ) |
48 |
1
|
imaex |
⊢ ( 𝐴 “ { 𝐵 } ) ∈ V |
49 |
|
sneq |
⊢ ( 𝑥 = ( 𝐴 “ { 𝐵 } ) → { 𝑥 } = { ( 𝐴 “ { 𝐵 } ) } ) |
50 |
49
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐴 “ { 𝐵 } ) → ( 𝑦 = { 𝑥 } ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) ) |
51 |
48 50
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝐴 “ { 𝐵 } ) ∧ 𝑦 = { 𝑥 } ) ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
52 |
47 51
|
bitri |
⊢ ( ∃ 𝑥 ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
53 |
42 43 52
|
3bitri |
⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
54 |
17 39 53
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
55 |
|
eqid |
⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) |
56 |
|
brxp |
⊢ ( 𝑦 ( V × V ) 𝑥 ↔ ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) ) |
57 |
16 14 56
|
mpbir2an |
⊢ 𝑦 ( V × V ) 𝑥 |
58 |
|
epel |
⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) |
59 |
58
|
anbi1ci |
⊢ ( ( 𝑧 ∈ Singletons ∧ 𝑧 E 𝑦 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ Singletons ) ) |
60 |
16
|
brresi |
⊢ ( 𝑧 ( E ↾ Singletons ) 𝑦 ↔ ( 𝑧 ∈ Singletons ∧ 𝑧 E 𝑦 ) ) |
61 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑦 ∩ Singletons ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ Singletons ) ) |
62 |
59 60 61
|
3bitr4ri |
⊢ ( 𝑧 ∈ ( 𝑦 ∩ Singletons ) ↔ 𝑧 ( E ↾ Singletons ) 𝑦 ) |
63 |
16 14 55 57 62
|
brtxpsd3 |
⊢ ( 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ↔ 𝑥 = ( 𝑦 ∩ Singletons ) ) |
64 |
54 63
|
anbi12i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ∧ 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ) ↔ ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ∧ 𝑥 = ( 𝑦 ∩ Singletons ) ) ) |
65 |
64
|
exbii |
⊢ ( ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ∧ 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ∧ 𝑥 = ( 𝑦 ∩ Singletons ) ) ) |
66 |
|
ineq1 |
⊢ ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } → ( 𝑦 ∩ Singletons ) = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
67 |
66
|
eqeq2d |
⊢ ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } → ( 𝑥 = ( 𝑦 ∩ Singletons ) ↔ 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) ) |
68 |
4 67
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ∧ 𝑥 = ( 𝑦 ∩ Singletons ) ) ↔ 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
69 |
15 65 68
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ↔ 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
70 |
14 3
|
brco |
⊢ ( 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ↔ ∃ 𝑦 ( 𝑥 Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐶 ) ) |
71 |
16
|
brbigcup |
⊢ ( 𝑥 Bigcup 𝑦 ↔ ∪ 𝑥 = 𝑦 ) |
72 |
|
eqcom |
⊢ ( ∪ 𝑥 = 𝑦 ↔ 𝑦 = ∪ 𝑥 ) |
73 |
71 72
|
bitri |
⊢ ( 𝑥 Bigcup 𝑦 ↔ 𝑦 = ∪ 𝑥 ) |
74 |
3
|
brbigcup |
⊢ ( 𝑦 Bigcup 𝐶 ↔ ∪ 𝑦 = 𝐶 ) |
75 |
|
eqcom |
⊢ ( ∪ 𝑦 = 𝐶 ↔ 𝐶 = ∪ 𝑦 ) |
76 |
74 75
|
bitri |
⊢ ( 𝑦 Bigcup 𝐶 ↔ 𝐶 = ∪ 𝑦 ) |
77 |
73 76
|
anbi12i |
⊢ ( ( 𝑥 Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐶 ) ↔ ( 𝑦 = ∪ 𝑥 ∧ 𝐶 = ∪ 𝑦 ) ) |
78 |
77
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐶 ) ↔ ∃ 𝑦 ( 𝑦 = ∪ 𝑥 ∧ 𝐶 = ∪ 𝑦 ) ) |
79 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
80 |
|
unieq |
⊢ ( 𝑦 = ∪ 𝑥 → ∪ 𝑦 = ∪ ∪ 𝑥 ) |
81 |
80
|
eqeq2d |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝐶 = ∪ 𝑦 ↔ 𝐶 = ∪ ∪ 𝑥 ) ) |
82 |
79 81
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = ∪ 𝑥 ∧ 𝐶 = ∪ 𝑦 ) ↔ 𝐶 = ∪ ∪ 𝑥 ) |
83 |
70 78 82
|
3bitri |
⊢ ( 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ↔ 𝐶 = ∪ ∪ 𝑥 ) |
84 |
69 83
|
anbi12i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ∧ 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ) ↔ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ) |
85 |
84
|
exbii |
⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ∧ 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ) |
86 |
11 13 85
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 Apply 𝐶 ↔ ∃ 𝑥 ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ) |
87 |
|
dffv5 |
⊢ ( 𝐴 ‘ 𝐵 ) = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) |
88 |
87
|
eqeq2i |
⊢ ( 𝐶 = ( 𝐴 ‘ 𝐵 ) ↔ 𝐶 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
89 |
9 86 88
|
3bitr4i |
⊢ ( 〈 𝐴 , 𝐵 〉 Apply 𝐶 ↔ 𝐶 = ( 𝐴 ‘ 𝐵 ) ) |