| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brapply.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
brapply.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
brapply.3 |
⊢ 𝐶 ∈ V |
| 4 |
|
snex |
⊢ { ( 𝐴 “ { 𝐵 } ) } ∈ V |
| 5 |
4
|
inex1 |
⊢ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∈ V |
| 6 |
|
unieq |
⊢ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) → ∪ 𝑥 = ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 7 |
6
|
unieqd |
⊢ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) → ∪ ∪ 𝑥 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) → ( 𝐶 = ∪ ∪ 𝑥 ↔ 𝐶 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) ) |
| 9 |
5 8
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ↔ 𝐶 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 10 |
|
df-apply |
⊢ Apply = ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |
| 11 |
10
|
breqi |
⊢ ( 〈 𝐴 , 𝐵 〉 Apply 𝐶 ↔ 〈 𝐴 , 𝐵 〉 ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) 𝐶 ) |
| 12 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
| 13 |
12 3
|
brco |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) 𝐶 ↔ ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ∧ 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ) ) |
| 14 |
|
vex |
⊢ 𝑥 ∈ V |
| 15 |
12 14
|
brco |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ↔ ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ∧ 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ) ) |
| 16 |
|
vex |
⊢ 𝑦 ∈ V |
| 17 |
12 16
|
brco |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ↔ ∃ 𝑧 ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ) |
| 18 |
|
vex |
⊢ 𝑧 ∈ V |
| 19 |
1 2 18
|
brpprod3a |
⊢ ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ) |
| 20 |
|
3anrot |
⊢ ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ↔ ( 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 21 |
|
vex |
⊢ 𝑎 ∈ V |
| 22 |
21
|
ideq |
⊢ ( 𝐴 I 𝑎 ↔ 𝐴 = 𝑎 ) |
| 23 |
|
eqcom |
⊢ ( 𝐴 = 𝑎 ↔ 𝑎 = 𝐴 ) |
| 24 |
22 23
|
bitri |
⊢ ( 𝐴 I 𝑎 ↔ 𝑎 = 𝐴 ) |
| 25 |
|
vex |
⊢ 𝑏 ∈ V |
| 26 |
2 25
|
brsingle |
⊢ ( 𝐵 Singleton 𝑏 ↔ 𝑏 = { 𝐵 } ) |
| 27 |
|
biid |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 𝑧 = 〈 𝑎 , 𝑏 〉 ) |
| 28 |
24 26 27
|
3anbi123i |
⊢ ( ( 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 29 |
20 28
|
bitri |
⊢ ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 30 |
29
|
2exbii |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝐴 I 𝑎 ∧ 𝐵 Singleton 𝑏 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 31 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 32 |
|
opeq1 |
⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , 𝑏 〉 = 〈 𝐴 , 𝑏 〉 ) |
| 33 |
32
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 𝑧 = 〈 𝐴 , 𝑏 〉 ) ) |
| 34 |
|
opeq2 |
⊢ ( 𝑏 = { 𝐵 } → 〈 𝐴 , 𝑏 〉 = 〈 𝐴 , { 𝐵 } 〉 ) |
| 35 |
34
|
eqeq2d |
⊢ ( 𝑏 = { 𝐵 } → ( 𝑧 = 〈 𝐴 , 𝑏 〉 ↔ 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ) ) |
| 36 |
1 31 33 35
|
ceqsex2v |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = { 𝐵 } ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ↔ 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ) |
| 37 |
19 30 36
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ↔ 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ) |
| 38 |
37
|
anbi1i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ) |
| 39 |
38
|
exbii |
⊢ ( ∃ 𝑧 ( 〈 𝐴 , 𝐵 〉 pprod ( I , Singleton ) 𝑧 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ) |
| 40 |
|
opex |
⊢ 〈 𝐴 , { 𝐵 } 〉 ∈ V |
| 41 |
|
breq1 |
⊢ ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 → ( 𝑧 ( Singleton ∘ Img ) 𝑦 ↔ 〈 𝐴 , { 𝐵 } 〉 ( Singleton ∘ Img ) 𝑦 ) ) |
| 42 |
40 41
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ 〈 𝐴 , { 𝐵 } 〉 ( Singleton ∘ Img ) 𝑦 ) |
| 43 |
40 16
|
brco |
⊢ ( 〈 𝐴 , { 𝐵 } 〉 ( Singleton ∘ Img ) 𝑦 ↔ ∃ 𝑥 ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ) |
| 44 |
1 31 14
|
brimg |
⊢ ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ↔ 𝑥 = ( 𝐴 “ { 𝐵 } ) ) |
| 45 |
14 16
|
brsingle |
⊢ ( 𝑥 Singleton 𝑦 ↔ 𝑦 = { 𝑥 } ) |
| 46 |
44 45
|
anbi12i |
⊢ ( ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ↔ ( 𝑥 = ( 𝐴 “ { 𝐵 } ) ∧ 𝑦 = { 𝑥 } ) ) |
| 47 |
46
|
exbii |
⊢ ( ∃ 𝑥 ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝐴 “ { 𝐵 } ) ∧ 𝑦 = { 𝑥 } ) ) |
| 48 |
1
|
imaex |
⊢ ( 𝐴 “ { 𝐵 } ) ∈ V |
| 49 |
|
sneq |
⊢ ( 𝑥 = ( 𝐴 “ { 𝐵 } ) → { 𝑥 } = { ( 𝐴 “ { 𝐵 } ) } ) |
| 50 |
49
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐴 “ { 𝐵 } ) → ( 𝑦 = { 𝑥 } ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) ) |
| 51 |
48 50
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝐴 “ { 𝐵 } ) ∧ 𝑦 = { 𝑥 } ) ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
| 52 |
47 51
|
bitri |
⊢ ( ∃ 𝑥 ( 〈 𝐴 , { 𝐵 } 〉 Img 𝑥 ∧ 𝑥 Singleton 𝑦 ) ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
| 53 |
42 43 52
|
3bitri |
⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝐴 , { 𝐵 } 〉 ∧ 𝑧 ( Singleton ∘ Img ) 𝑦 ) ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
| 54 |
17 39 53
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ↔ 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ) |
| 55 |
|
eqid |
⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) |
| 56 |
|
brxp |
⊢ ( 𝑦 ( V × V ) 𝑥 ↔ ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) ) |
| 57 |
16 14 56
|
mpbir2an |
⊢ 𝑦 ( V × V ) 𝑥 |
| 58 |
|
epel |
⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) |
| 59 |
58
|
anbi1ci |
⊢ ( ( 𝑧 ∈ Singletons ∧ 𝑧 E 𝑦 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ Singletons ) ) |
| 60 |
16
|
brresi |
⊢ ( 𝑧 ( E ↾ Singletons ) 𝑦 ↔ ( 𝑧 ∈ Singletons ∧ 𝑧 E 𝑦 ) ) |
| 61 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑦 ∩ Singletons ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ Singletons ) ) |
| 62 |
59 60 61
|
3bitr4ri |
⊢ ( 𝑧 ∈ ( 𝑦 ∩ Singletons ) ↔ 𝑧 ( E ↾ Singletons ) 𝑦 ) |
| 63 |
16 14 55 57 62
|
brtxpsd3 |
⊢ ( 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ↔ 𝑥 = ( 𝑦 ∩ Singletons ) ) |
| 64 |
54 63
|
anbi12i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ∧ 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ) ↔ ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ∧ 𝑥 = ( 𝑦 ∩ Singletons ) ) ) |
| 65 |
64
|
exbii |
⊢ ( ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) 𝑦 ∧ 𝑦 ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ∧ 𝑥 = ( 𝑦 ∩ Singletons ) ) ) |
| 66 |
|
ineq1 |
⊢ ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } → ( 𝑦 ∩ Singletons ) = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } → ( 𝑥 = ( 𝑦 ∩ Singletons ) ↔ 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) ) |
| 68 |
4 67
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = { ( 𝐴 “ { 𝐵 } ) } ∧ 𝑥 = ( 𝑦 ∩ Singletons ) ) ↔ 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 69 |
15 65 68
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ↔ 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 70 |
14 3
|
brco |
⊢ ( 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ↔ ∃ 𝑦 ( 𝑥 Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐶 ) ) |
| 71 |
16
|
brbigcup |
⊢ ( 𝑥 Bigcup 𝑦 ↔ ∪ 𝑥 = 𝑦 ) |
| 72 |
|
eqcom |
⊢ ( ∪ 𝑥 = 𝑦 ↔ 𝑦 = ∪ 𝑥 ) |
| 73 |
71 72
|
bitri |
⊢ ( 𝑥 Bigcup 𝑦 ↔ 𝑦 = ∪ 𝑥 ) |
| 74 |
3
|
brbigcup |
⊢ ( 𝑦 Bigcup 𝐶 ↔ ∪ 𝑦 = 𝐶 ) |
| 75 |
|
eqcom |
⊢ ( ∪ 𝑦 = 𝐶 ↔ 𝐶 = ∪ 𝑦 ) |
| 76 |
74 75
|
bitri |
⊢ ( 𝑦 Bigcup 𝐶 ↔ 𝐶 = ∪ 𝑦 ) |
| 77 |
73 76
|
anbi12i |
⊢ ( ( 𝑥 Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐶 ) ↔ ( 𝑦 = ∪ 𝑥 ∧ 𝐶 = ∪ 𝑦 ) ) |
| 78 |
77
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 Bigcup 𝑦 ∧ 𝑦 Bigcup 𝐶 ) ↔ ∃ 𝑦 ( 𝑦 = ∪ 𝑥 ∧ 𝐶 = ∪ 𝑦 ) ) |
| 79 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
| 80 |
|
unieq |
⊢ ( 𝑦 = ∪ 𝑥 → ∪ 𝑦 = ∪ ∪ 𝑥 ) |
| 81 |
80
|
eqeq2d |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝐶 = ∪ 𝑦 ↔ 𝐶 = ∪ ∪ 𝑥 ) ) |
| 82 |
79 81
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = ∪ 𝑥 ∧ 𝐶 = ∪ 𝑦 ) ↔ 𝐶 = ∪ ∪ 𝑥 ) |
| 83 |
70 78 82
|
3bitri |
⊢ ( 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ↔ 𝐶 = ∪ ∪ 𝑥 ) |
| 84 |
69 83
|
anbi12i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ∧ 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ) ↔ ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ) |
| 85 |
84
|
exbii |
⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) 𝑥 ∧ 𝑥 ( Bigcup ∘ Bigcup ) 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ) |
| 86 |
11 13 85
|
3bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 Apply 𝐶 ↔ ∃ 𝑥 ( 𝑥 = ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ∧ 𝐶 = ∪ ∪ 𝑥 ) ) |
| 87 |
|
dffv5 |
⊢ ( 𝐴 ‘ 𝐵 ) = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) |
| 88 |
87
|
eqeq2i |
⊢ ( 𝐶 = ( 𝐴 ‘ 𝐵 ) ↔ 𝐶 = ∪ ∪ ( { ( 𝐴 “ { 𝐵 } ) } ∩ Singletons ) ) |
| 89 |
9 86 88
|
3bitr4i |
⊢ ( 〈 𝐴 , 𝐵 〉 Apply 𝐶 ↔ 𝐶 = ( 𝐴 ‘ 𝐵 ) ) |