Metamath Proof Explorer


Theorem brapply

Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses brapply.1 AV
brapply.2 BV
brapply.3 CV
Assertion brapply AB𝖠𝗉𝗉𝗅𝗒CC=AB

Proof

Step Hyp Ref Expression
1 brapply.1 AV
2 brapply.2 BV
3 brapply.3 CV
4 snex ABV
5 4 inex1 AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V
6 unieq x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
7 6 unieqd x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
8 7 eqeq2d x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌C=xC=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
9 5 8 ceqsexv xx=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌C=xC=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
10 df-apply 𝖠𝗉𝗉𝗅𝗒=𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉V×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
11 10 breqi AB𝖠𝗉𝗉𝗅𝗒CAB𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉V×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇C
12 opex ABV
13 12 3 brco AB𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉V×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇CxABV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇xx𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉C
14 vex xV
15 12 14 brco ABV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇xyAB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yyV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌Vx
16 vex yV
17 12 16 brco AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yzABpprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇zz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀y
18 vex zV
19 1 2 18 brpprod3a ABpprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇zabz=abAIaB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇b
20 3anrot z=abAIaB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇bAIaB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇bz=ab
21 vex aV
22 21 ideq AIaA=a
23 eqcom A=aa=A
24 22 23 bitri AIaa=A
25 vex bV
26 2 25 brsingle B𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇bb=B
27 biid z=abz=ab
28 24 26 27 3anbi123i AIaB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇bz=aba=Ab=Bz=ab
29 20 28 bitri z=abAIaB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇ba=Ab=Bz=ab
30 29 2exbii abz=abAIaB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇baba=Ab=Bz=ab
31 snex BV
32 opeq1 a=Aab=Ab
33 32 eqeq2d a=Az=abz=Ab
34 opeq2 b=BAb=AB
35 34 eqeq2d b=Bz=Abz=AB
36 1 31 33 35 ceqsex2v aba=Ab=Bz=abz=AB
37 19 30 36 3bitri ABpprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇zz=AB
38 37 anbi1i ABpprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇zz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀yz=ABz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀y
39 38 exbii zABpprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇zz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀yzz=ABz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀y
40 opex ABV
41 breq1 z=ABz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀yAB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀y
42 40 41 ceqsexv zz=ABz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀yAB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀y
43 40 16 brco AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀yxAB𝖨𝗆𝗀xx𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇y
44 1 31 14 brimg AB𝖨𝗆𝗀xx=AB
45 14 16 brsingle x𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yy=x
46 44 45 anbi12i AB𝖨𝗆𝗀xx𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yx=ABy=x
47 46 exbii xAB𝖨𝗆𝗀xx𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yxx=ABy=x
48 1 imaex ABV
49 sneq x=ABx=AB
50 49 eqeq2d x=ABy=xy=AB
51 48 50 ceqsexv xx=ABy=xy=AB
52 47 51 bitri xAB𝖨𝗆𝗀xx𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yy=AB
53 42 43 52 3bitri zz=ABz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀yy=AB
54 17 39 53 3bitri AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yy=AB
55 eqid V×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V=V×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V
56 brxp yV×VxyVxV
57 16 14 56 mpbir2an yV×Vx
58 epel zEyzy
59 58 anbi1ci z𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌zEyzyz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
60 16 brresi zE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌yz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌zEy
61 elin zy𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌zyz𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
62 59 60 61 3bitr4ri zy𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌zE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌y
63 16 14 55 57 62 brtxpsd3 yV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌Vxx=y𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
64 54 63 anbi12i AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yyV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌Vxy=ABx=y𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
65 64 exbii yAB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇yyV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌Vxyy=ABx=y𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
66 ineq1 y=ABy𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
67 66 eqeq2d y=ABx=y𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
68 4 67 ceqsexv yy=ABx=y𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌x=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
69 15 65 68 3bitri ABV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇xx=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
70 14 3 brco x𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉Cyx𝖡𝗂𝗀𝖼𝗎𝗉yy𝖡𝗂𝗀𝖼𝗎𝗉C
71 16 brbigcup x𝖡𝗂𝗀𝖼𝗎𝗉yx=y
72 eqcom x=yy=x
73 71 72 bitri x𝖡𝗂𝗀𝖼𝗎𝗉yy=x
74 3 brbigcup y𝖡𝗂𝗀𝖼𝗎𝗉Cy=C
75 eqcom y=CC=y
76 74 75 bitri y𝖡𝗂𝗀𝖼𝗎𝗉CC=y
77 73 76 anbi12i x𝖡𝗂𝗀𝖼𝗎𝗉yy𝖡𝗂𝗀𝖼𝗎𝗉Cy=xC=y
78 77 exbii yx𝖡𝗂𝗀𝖼𝗎𝗉yy𝖡𝗂𝗀𝖼𝗎𝗉Cyy=xC=y
79 vuniex xV
80 unieq y=xy=x
81 80 eqeq2d y=xC=yC=x
82 79 81 ceqsexv yy=xC=yC=x
83 70 78 82 3bitri x𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉CC=x
84 69 83 anbi12i ABV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇xx𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉Cx=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌C=x
85 84 exbii xABV×VranVEE𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌V𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝖨𝗆𝗀pprodI𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇xx𝖡𝗂𝗀𝖼𝗎𝗉𝖡𝗂𝗀𝖼𝗎𝗉Cxx=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌C=x
86 11 13 85 3bitri AB𝖠𝗉𝗉𝗅𝗒Cxx=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌C=x
87 dffv5 AB=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
88 87 eqeq2i C=ABC=AB𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
89 9 86 88 3bitr4i AB𝖠𝗉𝗉𝗅𝗒CC=AB