Metamath Proof Explorer


Theorem dffv5

Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Assertion dffv5 FA=FA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌

Proof

Step Hyp Ref Expression
1 dffv3 FA=ιx|xFA
2 dfiota3 ιx|xFA=x|xFA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
3 abid2 x|xFA=FA
4 3 sneqi x|xFA=FA
5 4 ineq1i x|xFA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌=FA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
6 5 unieqi x|xFA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌=FA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
7 6 unieqi x|xFA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌=FA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
8 1 2 7 3eqtri FA=FA𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌