Metamath Proof Explorer


Theorem dffv5

Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Assertion dffv5 F A = F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌

Proof

Step Hyp Ref Expression
1 dffv3 F A = ι x | x F A
2 dfiota3 ι x | x F A = x | x F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
3 abid2 x | x F A = F A
4 3 sneqi x | x F A = F A
5 4 ineq1i x | x F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 = F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
6 5 unieqi x | x F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 = F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
7 6 unieqi x | x F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 = F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
8 1 2 7 3eqtri F A = F A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌