Metamath Proof Explorer


Theorem unisnif

Description: Express union of singleton in terms of if . (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion unisnif A = if A V A

Proof

Step Hyp Ref Expression
1 iftrue A V if A V A = A
2 unisng A V A = A
3 1 2 eqtr4d A V if A V A = A
4 iffalse ¬ A V if A V A =
5 snprc ¬ A V A =
6 5 biimpi ¬ A V A =
7 6 unieqd ¬ A V A =
8 uni0 =
9 7 8 eqtrdi ¬ A V A =
10 4 9 eqtr4d ¬ A V if A V A = A
11 3 10 pm2.61i if A V A = A
12 11 eqcomi A = if A V A