Metamath Proof Explorer


Theorem unisnif

Description: Express union of singleton in terms of if . (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion unisnif A=ifAVA

Proof

Step Hyp Ref Expression
1 iftrue AVifAVA=A
2 unisng AVA=A
3 1 2 eqtr4d AVifAVA=A
4 iffalse ¬AVifAVA=
5 snprc ¬AVA=
6 5 biimpi ¬AVA=
7 6 unieqd ¬AVA=
8 uni0 =
9 7 8 eqtrdi ¬AVA=
10 4 9 eqtr4d ¬AVifAVA=A
11 3 10 pm2.61i ifAVA=A
12 11 eqcomi A=ifAVA