Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
⊢ ( 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = 𝐴 ) |
2 |
|
unisng |
⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } = 𝐴 ) |
3 |
1 2
|
eqtr4d |
⊢ ( 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∪ { 𝐴 } ) |
4 |
|
iffalse |
⊢ ( ¬ 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∅ ) |
5 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
6 |
5
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
7 |
6
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } = ∪ ∅ ) |
8 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
9 |
7 8
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } = ∅ ) |
10 |
4 9
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∪ { 𝐴 } ) |
11 |
3 10
|
pm2.61i |
⊢ if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∪ { 𝐴 } |
12 |
11
|
eqcomi |
⊢ ∪ { 𝐴 } = if ( 𝐴 ∈ V , 𝐴 , ∅ ) |