Metamath Proof Explorer


Theorem unisnif

Description: Express union of singleton in terms of if . (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion unisnif { 𝐴 } = if ( 𝐴 ∈ V , 𝐴 , ∅ )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = 𝐴 )
2 unisng ( 𝐴 ∈ V → { 𝐴 } = 𝐴 )
3 1 2 eqtr4d ( 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = { 𝐴 } )
4 iffalse ( ¬ 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∅ )
5 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
6 5 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
7 6 unieqd ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
8 uni0 ∅ = ∅
9 7 8 eqtrdi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
10 4 9 eqtr4d ( ¬ 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = { 𝐴 } )
11 3 10 pm2.61i if ( 𝐴 ∈ V , 𝐴 , ∅ ) = { 𝐴 }
12 11 eqcomi { 𝐴 } = if ( 𝐴 ∈ V , 𝐴 , ∅ )