| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brcup.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | brcup.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | brcup.3 | ⊢ 𝐶  ∈  V | 
						
							| 4 |  | opex | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  V | 
						
							| 5 |  | df-cup | ⊢ Cup  =  ( ( ( V  ×  V )  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( ( ( ◡ 1st   ∘   E  )  ∪  ( ◡ 2nd   ∘   E  ) )  ⊗  V ) ) ) | 
						
							| 6 | 1 2 | opelvv | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  ( V  ×  V ) | 
						
							| 7 |  | brxp | ⊢ ( 〈 𝐴 ,  𝐵 〉 ( ( V  ×  V )  ×  V ) 𝐶  ↔  ( 〈 𝐴 ,  𝐵 〉  ∈  ( V  ×  V )  ∧  𝐶  ∈  V ) ) | 
						
							| 8 | 6 3 7 | mpbir2an | ⊢ 〈 𝐴 ,  𝐵 〉 ( ( V  ×  V )  ×  V ) 𝐶 | 
						
							| 9 |  | epel | ⊢ ( 𝑥  E  𝑦  ↔  𝑥  ∈  𝑦 ) | 
						
							| 10 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 11 | 10 4 | brcnv | ⊢ ( 𝑦 ◡ 1st  〈 𝐴 ,  𝐵 〉  ↔  〈 𝐴 ,  𝐵 〉 1st  𝑦 ) | 
						
							| 12 | 1 2 | br1steq | ⊢ ( 〈 𝐴 ,  𝐵 〉 1st  𝑦  ↔  𝑦  =  𝐴 ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( 𝑦 ◡ 1st  〈 𝐴 ,  𝐵 〉  ↔  𝑦  =  𝐴 ) | 
						
							| 14 | 9 13 | anbi12ci | ⊢ ( ( 𝑥  E  𝑦  ∧  𝑦 ◡ 1st  〈 𝐴 ,  𝐵 〉 )  ↔  ( 𝑦  =  𝐴  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 15 | 14 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  E  𝑦  ∧  𝑦 ◡ 1st  〈 𝐴 ,  𝐵 〉 )  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 16 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 17 | 16 4 | brco | ⊢ ( 𝑥 ( ◡ 1st   ∘   E  ) 〈 𝐴 ,  𝐵 〉  ↔  ∃ 𝑦 ( 𝑥  E  𝑦  ∧  𝑦 ◡ 1st  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 18 | 1 | clel3 | ⊢ ( 𝑥  ∈  𝐴  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 19 | 15 17 18 | 3bitr4i | ⊢ ( 𝑥 ( ◡ 1st   ∘   E  ) 〈 𝐴 ,  𝐵 〉  ↔  𝑥  ∈  𝐴 ) | 
						
							| 20 | 10 4 | brcnv | ⊢ ( 𝑦 ◡ 2nd  〈 𝐴 ,  𝐵 〉  ↔  〈 𝐴 ,  𝐵 〉 2nd  𝑦 ) | 
						
							| 21 | 1 2 | br2ndeq | ⊢ ( 〈 𝐴 ,  𝐵 〉 2nd  𝑦  ↔  𝑦  =  𝐵 ) | 
						
							| 22 | 20 21 | bitri | ⊢ ( 𝑦 ◡ 2nd  〈 𝐴 ,  𝐵 〉  ↔  𝑦  =  𝐵 ) | 
						
							| 23 | 9 22 | anbi12ci | ⊢ ( ( 𝑥  E  𝑦  ∧  𝑦 ◡ 2nd  〈 𝐴 ,  𝐵 〉 )  ↔  ( 𝑦  =  𝐵  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 24 | 23 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  E  𝑦  ∧  𝑦 ◡ 2nd  〈 𝐴 ,  𝐵 〉 )  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 25 | 16 4 | brco | ⊢ ( 𝑥 ( ◡ 2nd   ∘   E  ) 〈 𝐴 ,  𝐵 〉  ↔  ∃ 𝑦 ( 𝑥  E  𝑦  ∧  𝑦 ◡ 2nd  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 26 | 2 | clel3 | ⊢ ( 𝑥  ∈  𝐵  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑥  ∈  𝑦 ) ) | 
						
							| 27 | 24 25 26 | 3bitr4i | ⊢ ( 𝑥 ( ◡ 2nd   ∘   E  ) 〈 𝐴 ,  𝐵 〉  ↔  𝑥  ∈  𝐵 ) | 
						
							| 28 | 19 27 | orbi12i | ⊢ ( ( 𝑥 ( ◡ 1st   ∘   E  ) 〈 𝐴 ,  𝐵 〉  ∨  𝑥 ( ◡ 2nd   ∘   E  ) 〈 𝐴 ,  𝐵 〉 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 29 |  | brun | ⊢ ( 𝑥 ( ( ◡ 1st   ∘   E  )  ∪  ( ◡ 2nd   ∘   E  ) ) 〈 𝐴 ,  𝐵 〉  ↔  ( 𝑥 ( ◡ 1st   ∘   E  ) 〈 𝐴 ,  𝐵 〉  ∨  𝑥 ( ◡ 2nd   ∘   E  ) 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 30 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 31 | 28 29 30 | 3bitr4ri | ⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  𝑥 ( ( ◡ 1st   ∘   E  )  ∪  ( ◡ 2nd   ∘   E  ) ) 〈 𝐴 ,  𝐵 〉 ) | 
						
							| 32 | 4 3 5 8 31 | brtxpsd3 | ⊢ ( 〈 𝐴 ,  𝐵 〉 Cup 𝐶  ↔  𝐶  =  ( 𝐴  ∪  𝐵 ) ) |