| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brcup.1 |  |-  A e. _V | 
						
							| 2 |  | brcup.2 |  |-  B e. _V | 
						
							| 3 |  | brcup.3 |  |-  C e. _V | 
						
							| 4 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 5 |  | df-cup |  |-  Cup = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) (x) _V ) ) ) | 
						
							| 6 | 1 2 | opelvv |  |-  <. A , B >. e. ( _V X. _V ) | 
						
							| 7 |  | brxp |  |-  ( <. A , B >. ( ( _V X. _V ) X. _V ) C <-> ( <. A , B >. e. ( _V X. _V ) /\ C e. _V ) ) | 
						
							| 8 | 6 3 7 | mpbir2an |  |-  <. A , B >. ( ( _V X. _V ) X. _V ) C | 
						
							| 9 |  | epel |  |-  ( x _E y <-> x e. y ) | 
						
							| 10 |  | vex |  |-  y e. _V | 
						
							| 11 | 10 4 | brcnv |  |-  ( y `' 1st <. A , B >. <-> <. A , B >. 1st y ) | 
						
							| 12 | 1 2 | br1steq |  |-  ( <. A , B >. 1st y <-> y = A ) | 
						
							| 13 | 11 12 | bitri |  |-  ( y `' 1st <. A , B >. <-> y = A ) | 
						
							| 14 | 9 13 | anbi12ci |  |-  ( ( x _E y /\ y `' 1st <. A , B >. ) <-> ( y = A /\ x e. y ) ) | 
						
							| 15 | 14 | exbii |  |-  ( E. y ( x _E y /\ y `' 1st <. A , B >. ) <-> E. y ( y = A /\ x e. y ) ) | 
						
							| 16 |  | vex |  |-  x e. _V | 
						
							| 17 | 16 4 | brco |  |-  ( x ( `' 1st o. _E ) <. A , B >. <-> E. y ( x _E y /\ y `' 1st <. A , B >. ) ) | 
						
							| 18 | 1 | clel3 |  |-  ( x e. A <-> E. y ( y = A /\ x e. y ) ) | 
						
							| 19 | 15 17 18 | 3bitr4i |  |-  ( x ( `' 1st o. _E ) <. A , B >. <-> x e. A ) | 
						
							| 20 | 10 4 | brcnv |  |-  ( y `' 2nd <. A , B >. <-> <. A , B >. 2nd y ) | 
						
							| 21 | 1 2 | br2ndeq |  |-  ( <. A , B >. 2nd y <-> y = B ) | 
						
							| 22 | 20 21 | bitri |  |-  ( y `' 2nd <. A , B >. <-> y = B ) | 
						
							| 23 | 9 22 | anbi12ci |  |-  ( ( x _E y /\ y `' 2nd <. A , B >. ) <-> ( y = B /\ x e. y ) ) | 
						
							| 24 | 23 | exbii |  |-  ( E. y ( x _E y /\ y `' 2nd <. A , B >. ) <-> E. y ( y = B /\ x e. y ) ) | 
						
							| 25 | 16 4 | brco |  |-  ( x ( `' 2nd o. _E ) <. A , B >. <-> E. y ( x _E y /\ y `' 2nd <. A , B >. ) ) | 
						
							| 26 | 2 | clel3 |  |-  ( x e. B <-> E. y ( y = B /\ x e. y ) ) | 
						
							| 27 | 24 25 26 | 3bitr4i |  |-  ( x ( `' 2nd o. _E ) <. A , B >. <-> x e. B ) | 
						
							| 28 | 19 27 | orbi12i |  |-  ( ( x ( `' 1st o. _E ) <. A , B >. \/ x ( `' 2nd o. _E ) <. A , B >. ) <-> ( x e. A \/ x e. B ) ) | 
						
							| 29 |  | brun |  |-  ( x ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) <. A , B >. <-> ( x ( `' 1st o. _E ) <. A , B >. \/ x ( `' 2nd o. _E ) <. A , B >. ) ) | 
						
							| 30 |  | elun |  |-  ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) | 
						
							| 31 | 28 29 30 | 3bitr4ri |  |-  ( x e. ( A u. B ) <-> x ( ( `' 1st o. _E ) u. ( `' 2nd o. _E ) ) <. A , B >. ) | 
						
							| 32 | 4 3 5 8 31 | brtxpsd3 |  |-  ( <. A , B >. Cup C <-> C = ( A u. B ) ) |