Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for David A. Wheeler Hyperbolic trigonometric functions df-tanh  
				
		 
		
			
		 
		Description:   Define the hyperbolic tangent function (tanh).  We define it this way for
     cmpt  , which requires the form ( x e. A |-> B )  .  (Contributed by David A. Wheeler , 10-May-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-tanh ⊢   tanh  =  ( 𝑥   ∈  ( ◡ 𝑥  ) )  /  i ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							ctanh ⊢  tanh  
						
							1 
								
							 
							vx ⊢  𝑥   
						
							2 
								
							 
							ccosh ⊢  cosh  
						
							3 
								2 
							 
							ccnv ⊢  ◡  
						
							4 
								
							 
							cc ⊢  ℂ  
						
							5 
								
							 
							cc0 ⊢  0  
						
							6 
								5 
							 
							csn ⊢  { 0 }  
						
							7 
								4  6 
							 
							cdif ⊢  ( ℂ  ∖  { 0 } )  
						
							8 
								3  7 
							 
							cima ⊢  ( ◡  
						
							9 
								
							 
							ctan ⊢  tan  
						
							10 
								
							 
							ci ⊢  i  
						
							11 
								
							 
							cmul ⊢   ·   
						
							12 
								1 
							 
							cv ⊢  𝑥   
						
							13 
								10  12  11 
							 
							co ⊢  ( i  ·  𝑥  )  
						
							14 
								13  9 
							 
							cfv ⊢  ( tan ‘ ( i  ·  𝑥  ) )  
						
							15 
								
							 
							cdiv ⊢   /   
						
							16 
								14  10  15 
							 
							co ⊢  ( ( tan ‘ ( i  ·  𝑥  ) )  /  i )  
						
							17 
								1  8  16 
							 
							cmpt ⊢  ( 𝑥   ∈  ( ◡ 𝑥  ) )  /  i ) )  
						
							18 
								0  17 
							 
							wceq ⊢  tanh  =  ( 𝑥   ∈  ( ◡ 𝑥  ) )  /  i ) )