Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for David A. Wheeler
Hyperbolic trigonometric functions
df-tanh
Metamath Proof Explorer
Description: Define the hyperbolic tangent function (tanh). We define it this way for
cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler , 10-May-2015)
Ref
Expression
Assertion
df-tanh
⊢ tanh = ( 𝑥 ∈ ( ◡ cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctanh
⊢ tanh
1
vx
⊢ 𝑥
2
ccosh
⊢ cosh
3
2
ccnv
⊢ ◡ cosh
4
cc
⊢ ℂ
5
cc0
⊢ 0
6
5
csn
⊢ { 0 }
7
4 6
cdif
⊢ ( ℂ ∖ { 0 } )
8
3 7
cima
⊢ ( ◡ cosh “ ( ℂ ∖ { 0 } ) )
9
ctan
⊢ tan
10
ci
⊢ i
11
cmul
⊢ ·
12
1
cv
⊢ 𝑥
13
10 12 11
co
⊢ ( i · 𝑥 )
14
13 9
cfv
⊢ ( tan ‘ ( i · 𝑥 ) )
15
cdiv
⊢ /
16
14 10 15
co
⊢ ( ( tan ‘ ( i · 𝑥 ) ) / i )
17
1 8 16
cmpt
⊢ ( 𝑥 ∈ ( ◡ cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )
18
0 17
wceq
⊢ tanh = ( 𝑥 ∈ ( ◡ cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )