Metamath Proof Explorer


Definition df-tanh

Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion df-tanh tanh = ( 𝑥 ∈ ( cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctanh tanh
1 vx 𝑥
2 ccosh cosh
3 2 ccnv cosh
4 cc
5 cc0 0
6 5 csn { 0 }
7 4 6 cdif ( ℂ ∖ { 0 } )
8 3 7 cima ( cosh “ ( ℂ ∖ { 0 } ) )
9 ctan tan
10 ci i
11 cmul ·
12 1 cv 𝑥
13 10 12 11 co ( i · 𝑥 )
14 13 9 cfv ( tan ‘ ( i · 𝑥 ) )
15 cdiv /
16 14 10 15 co ( ( tan ‘ ( i · 𝑥 ) ) / i )
17 1 8 16 cmpt ( 𝑥 ∈ ( cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )
18 0 17 wceq tanh = ( 𝑥 ∈ ( cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )