Metamath Proof Explorer


Definition df-tanh

Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion df-tanh
|- tanh = ( x e. ( `' cosh " ( CC \ { 0 } ) ) |-> ( ( tan ` ( _i x. x ) ) / _i ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctanh
 |-  tanh
1 vx
 |-  x
2 ccosh
 |-  cosh
3 2 ccnv
 |-  `' cosh
4 cc
 |-  CC
5 cc0
 |-  0
6 5 csn
 |-  { 0 }
7 4 6 cdif
 |-  ( CC \ { 0 } )
8 3 7 cima
 |-  ( `' cosh " ( CC \ { 0 } ) )
9 ctan
 |-  tan
10 ci
 |-  _i
11 cmul
 |-  x.
12 1 cv
 |-  x
13 10 12 11 co
 |-  ( _i x. x )
14 13 9 cfv
 |-  ( tan ` ( _i x. x ) )
15 cdiv
 |-  /
16 14 10 15 co
 |-  ( ( tan ` ( _i x. x ) ) / _i )
17 1 8 16 cmpt
 |-  ( x e. ( `' cosh " ( CC \ { 0 } ) ) |-> ( ( tan ` ( _i x. x ) ) / _i ) )
18 0 17 wceq
 |-  tanh = ( x e. ( `' cosh " ( CC \ { 0 } ) ) |-> ( ( tan ` ( _i x. x ) ) / _i ) )