| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctoplnd |
⊢ TopLnd |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
4
|
cpw |
⊢ 𝒫 𝑥 |
| 6 |
4
|
cuni |
⊢ ∪ 𝑥 |
| 7 |
3
|
cv |
⊢ 𝑦 |
| 8 |
7
|
cuni |
⊢ ∪ 𝑦 |
| 9 |
6 8
|
wceq |
⊢ ∪ 𝑥 = ∪ 𝑦 |
| 10 |
|
vz |
⊢ 𝑧 |
| 11 |
10
|
cv |
⊢ 𝑧 |
| 12 |
|
cdom |
⊢ ≼ |
| 13 |
|
com |
⊢ ω |
| 14 |
11 13 12
|
wbr |
⊢ 𝑧 ≼ ω |
| 15 |
11
|
cuni |
⊢ ∪ 𝑧 |
| 16 |
6 15
|
wceq |
⊢ ∪ 𝑥 = ∪ 𝑧 |
| 17 |
14 16
|
wa |
⊢ ( 𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧 ) |
| 18 |
17 10 5
|
wrex |
⊢ ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧 ) |
| 19 |
9 18
|
wi |
⊢ ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧 ) ) |
| 20 |
19 3 5
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧 ) ) |
| 21 |
20 1 2
|
crab |
⊢ { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧 ) ) } |
| 22 |
0 21
|
wceq |
⊢ TopLnd = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧 ) ) } |