Metamath Proof Explorer


Definition df-toplnd

Description: A topology isLindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015)

Ref Expression
Assertion df-toplnd TopLnd = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctoplnd TopLnd
1 vx 𝑥
2 ctop Top
3 vy 𝑦
4 1 cv 𝑥
5 4 cpw 𝒫 𝑥
6 4 cuni 𝑥
7 3 cv 𝑦
8 7 cuni 𝑦
9 6 8 wceq 𝑥 = 𝑦
10 vz 𝑧
11 10 cv 𝑧
12 cdom
13 com ω
14 11 13 12 wbr 𝑧 ≼ ω
15 11 cuni 𝑧
16 6 15 wceq 𝑥 = 𝑧
17 14 16 wa ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 )
18 17 10 5 wrex 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 )
19 9 18 wi ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 ) )
20 19 3 5 wral 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 ) )
21 20 1 2 crab { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 ) ) }
22 0 21 wceq TopLnd = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ 𝒫 𝑥 ( 𝑧 ≼ ω ∧ 𝑥 = 𝑧 ) ) }