Metamath Proof Explorer


Definition df-topsp

Description: Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015)

Ref Expression
Assertion df-topsp TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctps TopSp
1 vf 𝑓
2 ctopn TopOpen
3 1 cv 𝑓
4 3 2 cfv ( TopOpen ‘ 𝑓 )
5 ctopon TopOn
6 cbs Base
7 3 6 cfv ( Base ‘ 𝑓 )
8 7 5 cfv ( TopOn ‘ ( Base ‘ 𝑓 ) )
9 4 8 wcel ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) )
10 9 1 cab { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) }
11 0 10 wceq TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) }