Description: Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-topsp | ⊢ TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctps | ⊢ TopSp | |
1 | vf | ⊢ 𝑓 | |
2 | ctopn | ⊢ TopOpen | |
3 | 1 | cv | ⊢ 𝑓 |
4 | 3 2 | cfv | ⊢ ( TopOpen ‘ 𝑓 ) |
5 | ctopon | ⊢ TopOn | |
6 | cbs | ⊢ Base | |
7 | 3 6 | cfv | ⊢ ( Base ‘ 𝑓 ) |
8 | 7 5 | cfv | ⊢ ( TopOn ‘ ( Base ‘ 𝑓 ) ) |
9 | 4 8 | wcel | ⊢ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) |
10 | 9 1 | cab | ⊢ { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } |
11 | 0 10 | wceq | ⊢ TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } |