| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctotbnd |
⊢ TotBnd |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vm |
⊢ 𝑚 |
| 4 |
|
cmet |
⊢ Met |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
5 4
|
cfv |
⊢ ( Met ‘ 𝑥 ) |
| 7 |
|
vd |
⊢ 𝑑 |
| 8 |
|
crp |
⊢ ℝ+ |
| 9 |
|
vv |
⊢ 𝑣 |
| 10 |
|
cfn |
⊢ Fin |
| 11 |
9
|
cv |
⊢ 𝑣 |
| 12 |
11
|
cuni |
⊢ ∪ 𝑣 |
| 13 |
12 5
|
wceq |
⊢ ∪ 𝑣 = 𝑥 |
| 14 |
|
vb |
⊢ 𝑏 |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
14
|
cv |
⊢ 𝑏 |
| 17 |
15
|
cv |
⊢ 𝑦 |
| 18 |
|
cbl |
⊢ ball |
| 19 |
3
|
cv |
⊢ 𝑚 |
| 20 |
19 18
|
cfv |
⊢ ( ball ‘ 𝑚 ) |
| 21 |
7
|
cv |
⊢ 𝑑 |
| 22 |
17 21 20
|
co |
⊢ ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 23 |
16 22
|
wceq |
⊢ 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 24 |
23 15 5
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 25 |
24 14 11
|
wral |
⊢ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 26 |
13 25
|
wa |
⊢ ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
| 27 |
26 9 10
|
wrex |
⊢ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
| 28 |
27 7 8
|
wral |
⊢ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
| 29 |
28 3 6
|
crab |
⊢ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } |
| 30 |
1 2 29
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
| 31 |
0 30
|
wceq |
⊢ TotBnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |