| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cstrkgc |
⊢ TarskiGC |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cbs |
⊢ Base |
| 3 |
1
|
cv |
⊢ 𝑓 |
| 4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 5 |
|
vp |
⊢ 𝑝 |
| 6 |
|
cds |
⊢ dist |
| 7 |
3 6
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
| 8 |
|
vd |
⊢ 𝑑 |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
5
|
cv |
⊢ 𝑝 |
| 11 |
|
vy |
⊢ 𝑦 |
| 12 |
9
|
cv |
⊢ 𝑥 |
| 13 |
8
|
cv |
⊢ 𝑑 |
| 14 |
11
|
cv |
⊢ 𝑦 |
| 15 |
12 14 13
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
| 16 |
14 12 13
|
co |
⊢ ( 𝑦 𝑑 𝑥 ) |
| 17 |
15 16
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) |
| 18 |
17 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) |
| 19 |
18 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) |
| 20 |
|
vz |
⊢ 𝑧 |
| 21 |
20
|
cv |
⊢ 𝑧 |
| 22 |
21 21 13
|
co |
⊢ ( 𝑧 𝑑 𝑧 ) |
| 23 |
15 22
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) |
| 24 |
12 14
|
wceq |
⊢ 𝑥 = 𝑦 |
| 25 |
23 24
|
wi |
⊢ ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
| 26 |
25 20 10
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
| 27 |
26 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
| 28 |
27 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
| 29 |
19 28
|
wa |
⊢ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 30 |
29 8 7
|
wsbc |
⊢ [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 31 |
30 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 32 |
31 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) } |
| 33 |
0 32
|
wceq |
⊢ TarskiGC = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) } |