| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvtxdg |
⊢ VtxDeg |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
cvtx |
⊢ Vtx |
| 4 |
1
|
cv |
⊢ 𝑔 |
| 5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
| 6 |
|
vv |
⊢ 𝑣 |
| 7 |
|
ciedg |
⊢ iEdg |
| 8 |
4 7
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
| 9 |
|
ve |
⊢ 𝑒 |
| 10 |
|
vu |
⊢ 𝑢 |
| 11 |
6
|
cv |
⊢ 𝑣 |
| 12 |
|
chash |
⊢ ♯ |
| 13 |
|
vx |
⊢ 𝑥 |
| 14 |
9
|
cv |
⊢ 𝑒 |
| 15 |
14
|
cdm |
⊢ dom 𝑒 |
| 16 |
10
|
cv |
⊢ 𝑢 |
| 17 |
13
|
cv |
⊢ 𝑥 |
| 18 |
17 14
|
cfv |
⊢ ( 𝑒 ‘ 𝑥 ) |
| 19 |
16 18
|
wcel |
⊢ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) |
| 20 |
19 13 15
|
crab |
⊢ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } |
| 21 |
20 12
|
cfv |
⊢ ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) |
| 22 |
|
cxad |
⊢ +𝑒 |
| 23 |
16
|
csn |
⊢ { 𝑢 } |
| 24 |
18 23
|
wceq |
⊢ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } |
| 25 |
24 13 15
|
crab |
⊢ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } |
| 26 |
25 12
|
cfv |
⊢ ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) |
| 27 |
21 26 22
|
co |
⊢ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) |
| 28 |
10 11 27
|
cmpt |
⊢ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 29 |
9 8 28
|
csb |
⊢ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 30 |
6 5 29
|
csb |
⊢ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 31 |
1 2 30
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 32 |
0 31
|
wceq |
⊢ VtxDeg = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |