| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdgfval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vtxdgfval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
vtxdgfval.a |
⊢ 𝐴 = dom 𝐼 |
| 4 |
|
df-vtxdg |
⊢ VtxDeg = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 5 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
| 6 |
|
fvex |
⊢ ( iEdg ‘ 𝑔 ) ∈ V |
| 7 |
|
simpl |
⊢ ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → 𝑣 = ( Vtx ‘ 𝑔 ) ) |
| 8 |
|
dmeq |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → dom 𝑒 = dom ( iEdg ‘ 𝑔 ) ) |
| 9 |
|
fveq1 |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( 𝑒 ‘ 𝑥 ) = ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) ↔ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ) ) |
| 11 |
8 10
|
rabeqbidv |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) ) |
| 13 |
9
|
eqeq1d |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ( 𝑒 ‘ 𝑥 ) = { 𝑢 } ↔ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } ) ) |
| 14 |
8 13
|
rabeqbidv |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) |
| 16 |
12 15
|
oveq12d |
⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 18 |
7 17
|
mpteq12dv |
⊢ ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 19 |
5 6 18
|
csbie2 |
⊢ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
| 21 |
20 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 22 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 23 |
22
|
dmeqd |
⊢ ( 𝑔 = 𝐺 → dom ( iEdg ‘ 𝑔 ) = dom ( iEdg ‘ 𝐺 ) ) |
| 24 |
2
|
dmeqi |
⊢ dom 𝐼 = dom ( iEdg ‘ 𝐺 ) |
| 25 |
3 24
|
eqtri |
⊢ 𝐴 = dom ( iEdg ‘ 𝐺 ) |
| 26 |
23 25
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → dom ( iEdg ‘ 𝑔 ) = 𝐴 ) |
| 27 |
22 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = 𝐼 ) |
| 28 |
27
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 29 |
28
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ↔ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
| 30 |
26 29
|
rabeqbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| 32 |
28
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } ↔ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } ) ) |
| 33 |
26 32
|
rabeqbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) |
| 35 |
31 34
|
oveq12d |
⊢ ( 𝑔 = 𝐺 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 36 |
21 35
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 38 |
19 37
|
eqtrid |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 39 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
| 40 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 41 |
|
mptexg |
⊢ ( 𝑉 ∈ V → ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ∈ V ) |
| 42 |
40 41
|
mp1i |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ∈ V ) |
| 43 |
4 38 39 42
|
fvmptd2 |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |