Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgfval.v |
|- V = ( Vtx ` G ) |
2 |
|
vtxdgfval.i |
|- I = ( iEdg ` G ) |
3 |
|
vtxdgfval.a |
|- A = dom I |
4 |
|
df-vtxdg |
|- VtxDeg = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) ) |
5 |
|
fvex |
|- ( Vtx ` g ) e. _V |
6 |
|
fvex |
|- ( iEdg ` g ) e. _V |
7 |
|
simpl |
|- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> v = ( Vtx ` g ) ) |
8 |
|
dmeq |
|- ( e = ( iEdg ` g ) -> dom e = dom ( iEdg ` g ) ) |
9 |
|
fveq1 |
|- ( e = ( iEdg ` g ) -> ( e ` x ) = ( ( iEdg ` g ) ` x ) ) |
10 |
9
|
eleq2d |
|- ( e = ( iEdg ` g ) -> ( u e. ( e ` x ) <-> u e. ( ( iEdg ` g ) ` x ) ) ) |
11 |
8 10
|
rabeqbidv |
|- ( e = ( iEdg ` g ) -> { x e. dom e | u e. ( e ` x ) } = { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) |
12 |
11
|
fveq2d |
|- ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | u e. ( e ` x ) } ) = ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) ) |
13 |
9
|
eqeq1d |
|- ( e = ( iEdg ` g ) -> ( ( e ` x ) = { u } <-> ( ( iEdg ` g ) ` x ) = { u } ) ) |
14 |
8 13
|
rabeqbidv |
|- ( e = ( iEdg ` g ) -> { x e. dom e | ( e ` x ) = { u } } = { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) |
15 |
14
|
fveq2d |
|- ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | ( e ` x ) = { u } } ) = ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) |
16 |
12 15
|
oveq12d |
|- ( e = ( iEdg ` g ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
17 |
16
|
adantl |
|- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
18 |
7 17
|
mpteq12dv |
|- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) ) |
19 |
5 6 18
|
csbie2 |
|- [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
20 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
21 |
20 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
22 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
23 |
22
|
dmeqd |
|- ( g = G -> dom ( iEdg ` g ) = dom ( iEdg ` G ) ) |
24 |
2
|
dmeqi |
|- dom I = dom ( iEdg ` G ) |
25 |
3 24
|
eqtri |
|- A = dom ( iEdg ` G ) |
26 |
23 25
|
eqtr4di |
|- ( g = G -> dom ( iEdg ` g ) = A ) |
27 |
22 2
|
eqtr4di |
|- ( g = G -> ( iEdg ` g ) = I ) |
28 |
27
|
fveq1d |
|- ( g = G -> ( ( iEdg ` g ) ` x ) = ( I ` x ) ) |
29 |
28
|
eleq2d |
|- ( g = G -> ( u e. ( ( iEdg ` g ) ` x ) <-> u e. ( I ` x ) ) ) |
30 |
26 29
|
rabeqbidv |
|- ( g = G -> { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } = { x e. A | u e. ( I ` x ) } ) |
31 |
30
|
fveq2d |
|- ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) = ( # ` { x e. A | u e. ( I ` x ) } ) ) |
32 |
28
|
eqeq1d |
|- ( g = G -> ( ( ( iEdg ` g ) ` x ) = { u } <-> ( I ` x ) = { u } ) ) |
33 |
26 32
|
rabeqbidv |
|- ( g = G -> { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } = { x e. A | ( I ` x ) = { u } } ) |
34 |
33
|
fveq2d |
|- ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) = ( # ` { x e. A | ( I ` x ) = { u } } ) ) |
35 |
31 34
|
oveq12d |
|- ( g = G -> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) = ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) |
36 |
21 35
|
mpteq12dv |
|- ( g = G -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
37 |
36
|
adantl |
|- ( ( G e. W /\ g = G ) -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
38 |
19 37
|
eqtrid |
|- ( ( G e. W /\ g = G ) -> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
39 |
|
elex |
|- ( G e. W -> G e. _V ) |
40 |
1
|
fvexi |
|- V e. _V |
41 |
|
mptexg |
|- ( V e. _V -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) |
42 |
40 41
|
mp1i |
|- ( G e. W -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) |
43 |
4 38 39 42
|
fvmptd2 |
|- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |