| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdgfval.v |
|- V = ( Vtx ` G ) |
| 2 |
|
vtxdgfval.i |
|- I = ( iEdg ` G ) |
| 3 |
|
vtxdgfval.a |
|- A = dom I |
| 4 |
|
df-vtxdg |
|- VtxDeg = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) ) |
| 5 |
|
fvex |
|- ( Vtx ` g ) e. _V |
| 6 |
|
fvex |
|- ( iEdg ` g ) e. _V |
| 7 |
|
simpl |
|- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> v = ( Vtx ` g ) ) |
| 8 |
|
dmeq |
|- ( e = ( iEdg ` g ) -> dom e = dom ( iEdg ` g ) ) |
| 9 |
|
fveq1 |
|- ( e = ( iEdg ` g ) -> ( e ` x ) = ( ( iEdg ` g ) ` x ) ) |
| 10 |
9
|
eleq2d |
|- ( e = ( iEdg ` g ) -> ( u e. ( e ` x ) <-> u e. ( ( iEdg ` g ) ` x ) ) ) |
| 11 |
8 10
|
rabeqbidv |
|- ( e = ( iEdg ` g ) -> { x e. dom e | u e. ( e ` x ) } = { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) |
| 12 |
11
|
fveq2d |
|- ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | u e. ( e ` x ) } ) = ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) ) |
| 13 |
9
|
eqeq1d |
|- ( e = ( iEdg ` g ) -> ( ( e ` x ) = { u } <-> ( ( iEdg ` g ) ` x ) = { u } ) ) |
| 14 |
8 13
|
rabeqbidv |
|- ( e = ( iEdg ` g ) -> { x e. dom e | ( e ` x ) = { u } } = { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) |
| 15 |
14
|
fveq2d |
|- ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | ( e ` x ) = { u } } ) = ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) |
| 16 |
12 15
|
oveq12d |
|- ( e = ( iEdg ` g ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
| 17 |
16
|
adantl |
|- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
| 18 |
7 17
|
mpteq12dv |
|- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) ) |
| 19 |
5 6 18
|
csbie2 |
|- [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
| 20 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
| 21 |
20 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
| 22 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
| 23 |
22
|
dmeqd |
|- ( g = G -> dom ( iEdg ` g ) = dom ( iEdg ` G ) ) |
| 24 |
2
|
dmeqi |
|- dom I = dom ( iEdg ` G ) |
| 25 |
3 24
|
eqtri |
|- A = dom ( iEdg ` G ) |
| 26 |
23 25
|
eqtr4di |
|- ( g = G -> dom ( iEdg ` g ) = A ) |
| 27 |
22 2
|
eqtr4di |
|- ( g = G -> ( iEdg ` g ) = I ) |
| 28 |
27
|
fveq1d |
|- ( g = G -> ( ( iEdg ` g ) ` x ) = ( I ` x ) ) |
| 29 |
28
|
eleq2d |
|- ( g = G -> ( u e. ( ( iEdg ` g ) ` x ) <-> u e. ( I ` x ) ) ) |
| 30 |
26 29
|
rabeqbidv |
|- ( g = G -> { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } = { x e. A | u e. ( I ` x ) } ) |
| 31 |
30
|
fveq2d |
|- ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) = ( # ` { x e. A | u e. ( I ` x ) } ) ) |
| 32 |
28
|
eqeq1d |
|- ( g = G -> ( ( ( iEdg ` g ) ` x ) = { u } <-> ( I ` x ) = { u } ) ) |
| 33 |
26 32
|
rabeqbidv |
|- ( g = G -> { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } = { x e. A | ( I ` x ) = { u } } ) |
| 34 |
33
|
fveq2d |
|- ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) = ( # ` { x e. A | ( I ` x ) = { u } } ) ) |
| 35 |
31 34
|
oveq12d |
|- ( g = G -> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) = ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) |
| 36 |
21 35
|
mpteq12dv |
|- ( g = G -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| 37 |
36
|
adantl |
|- ( ( G e. W /\ g = G ) -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| 38 |
19 37
|
eqtrid |
|- ( ( G e. W /\ g = G ) -> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| 39 |
|
elex |
|- ( G e. W -> G e. _V ) |
| 40 |
1
|
fvexi |
|- V e. _V |
| 41 |
|
mptexg |
|- ( V e. _V -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) |
| 42 |
40 41
|
mp1i |
|- ( G e. W -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) |
| 43 |
4 38 39 42
|
fvmptd2 |
|- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |