| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdgfval.v |
|
| 2 |
|
vtxdgfval.i |
|
| 3 |
|
vtxdgfval.a |
|
| 4 |
|
df-vtxdg |
|
| 5 |
|
fvex |
|
| 6 |
|
fvex |
|
| 7 |
|
simpl |
|
| 8 |
|
dmeq |
|
| 9 |
|
fveq1 |
|
| 10 |
9
|
eleq2d |
|
| 11 |
8 10
|
rabeqbidv |
|
| 12 |
11
|
fveq2d |
|
| 13 |
9
|
eqeq1d |
|
| 14 |
8 13
|
rabeqbidv |
|
| 15 |
14
|
fveq2d |
|
| 16 |
12 15
|
oveq12d |
|
| 17 |
16
|
adantl |
|
| 18 |
7 17
|
mpteq12dv |
|
| 19 |
5 6 18
|
csbie2 |
|
| 20 |
|
fveq2 |
|
| 21 |
20 1
|
eqtr4di |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
dmeqd |
|
| 24 |
2
|
dmeqi |
|
| 25 |
3 24
|
eqtri |
|
| 26 |
23 25
|
eqtr4di |
|
| 27 |
22 2
|
eqtr4di |
|
| 28 |
27
|
fveq1d |
|
| 29 |
28
|
eleq2d |
|
| 30 |
26 29
|
rabeqbidv |
|
| 31 |
30
|
fveq2d |
|
| 32 |
28
|
eqeq1d |
|
| 33 |
26 32
|
rabeqbidv |
|
| 34 |
33
|
fveq2d |
|
| 35 |
31 34
|
oveq12d |
|
| 36 |
21 35
|
mpteq12dv |
|
| 37 |
36
|
adantl |
|
| 38 |
19 37
|
eqtrid |
|
| 39 |
|
elex |
|
| 40 |
1
|
fvexi |
|
| 41 |
|
mptexg |
|
| 42 |
40 41
|
mp1i |
|
| 43 |
4 38 39 42
|
fvmptd2 |
|