| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssequn2 |
⊢ ( ( V ∖ dom card ) ⊆ Fin ↔ ( Fin ∪ ( V ∖ dom card ) ) = Fin ) |
| 2 |
|
dfac10 |
⊢ ( CHOICE ↔ dom card = V ) |
| 3 |
|
finnum |
⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ dom card ) |
| 4 |
3
|
ssriv |
⊢ Fin ⊆ dom card |
| 5 |
|
ssequn2 |
⊢ ( Fin ⊆ dom card ↔ ( dom card ∪ Fin ) = dom card ) |
| 6 |
4 5
|
mpbi |
⊢ ( dom card ∪ Fin ) = dom card |
| 7 |
6
|
eqeq1i |
⊢ ( ( dom card ∪ Fin ) = V ↔ dom card = V ) |
| 8 |
2 7
|
bitr4i |
⊢ ( CHOICE ↔ ( dom card ∪ Fin ) = V ) |
| 9 |
|
ssv |
⊢ ( dom card ∪ Fin ) ⊆ V |
| 10 |
|
eqss |
⊢ ( ( dom card ∪ Fin ) = V ↔ ( ( dom card ∪ Fin ) ⊆ V ∧ V ⊆ ( dom card ∪ Fin ) ) ) |
| 11 |
9 10
|
mpbiran |
⊢ ( ( dom card ∪ Fin ) = V ↔ V ⊆ ( dom card ∪ Fin ) ) |
| 12 |
|
ssundif |
⊢ ( V ⊆ ( dom card ∪ Fin ) ↔ ( V ∖ dom card ) ⊆ Fin ) |
| 13 |
8 11 12
|
3bitri |
⊢ ( CHOICE ↔ ( V ∖ dom card ) ⊆ Fin ) |
| 14 |
|
dffin7-2 |
⊢ FinVII = ( Fin ∪ ( V ∖ dom card ) ) |
| 15 |
14
|
eqeq1i |
⊢ ( FinVII = Fin ↔ ( Fin ∪ ( V ∖ dom card ) ) = Fin ) |
| 16 |
1 13 15
|
3bitr4i |
⊢ ( CHOICE ↔ FinVII = Fin ) |