Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcomember | ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-comember | ⊢ ( CoMembEr 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) ErALTV 𝐴 ) | |
| 2 | df-coels | ⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) | |
| 3 | 2 | erALTVeq1i | ⊢ ( ∼ 𝐴 ErALTV 𝐴 ↔ ≀ ( ◡ E ↾ 𝐴 ) ErALTV 𝐴 ) |
| 4 | 1 3 | bitr4i | ⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴 ) |