Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dff1o5 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
2 | dffo2 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) | |
3 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
4 | 3 | biantrurd | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ran 𝐹 = 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) ) |
5 | 2 4 | bitr4id | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ran 𝐹 = 𝐵 ) ) |
6 | 5 | pm5.32i | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |
7 | 1 6 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) |