Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dffunsALTV5 | ⊢ FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑥 ∈ ran 𝑓 ∀ 𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑓 ∩ [ 𝑦 ] ◡ 𝑓 ) = ∅ ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV4 | ⊢ FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑢 ∃* 𝑥 𝑢 𝑓 𝑥 } | |
2 | ineccnvmo2 | ⊢ ( ∀ 𝑥 ∈ ran 𝑓 ∀ 𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑓 ∩ [ 𝑦 ] ◡ 𝑓 ) = ∅ ) ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑓 𝑥 ) | |
3 | 2 | rabbii | ⊢ { 𝑓 ∈ Rels ∣ ∀ 𝑥 ∈ ran 𝑓 ∀ 𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑓 ∩ [ 𝑦 ] ◡ 𝑓 ) = ∅ ) } = { 𝑓 ∈ Rels ∣ ∀ 𝑢 ∃* 𝑥 𝑢 𝑓 𝑥 } |
4 | 1 3 | eqtr4i | ⊢ FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑥 ∈ ran 𝑓 ∀ 𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑓 ∩ [ 𝑦 ] ◡ 𝑓 ) = ∅ ) } |