Metamath Proof Explorer


Theorem dffunsALTV5

Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion dffunsALTV5 FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑓 ∩ [ 𝑦 ] 𝑓 ) = ∅ ) }

Proof

Step Hyp Ref Expression
1 dffunsALTV4 FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑢 ∃* 𝑥 𝑢 𝑓 𝑥 }
2 ineccnvmo2 ( ∀ 𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑓 ∩ [ 𝑦 ] 𝑓 ) = ∅ ) ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝑓 𝑥 )
3 2 rabbii { 𝑓 ∈ Rels ∣ ∀ 𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑓 ∩ [ 𝑦 ] 𝑓 ) = ∅ ) } = { 𝑓 ∈ Rels ∣ ∀ 𝑢 ∃* 𝑥 𝑢 𝑓 𝑥 }
4 1 3 eqtr4i FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑓 ∩ [ 𝑦 ] 𝑓 ) = ∅ ) }