Metamath Proof Explorer


Theorem dfnbgr2

Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypotheses nbgrval.v 𝑉 = ( Vtx ‘ 𝐺 )
nbgrval.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion dfnbgr2 ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } )

Proof

Step Hyp Ref Expression
1 nbgrval.v 𝑉 = ( Vtx ‘ 𝐺 )
2 nbgrval.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 2 nbgrval ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } )
4 prssg ( ( 𝑁𝑉𝑛 ∈ V ) → ( ( 𝑁𝑒𝑛𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
5 4 elvd ( 𝑁𝑉 → ( ( 𝑁𝑒𝑛𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
6 5 bicomd ( 𝑁𝑉 → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ( 𝑁𝑒𝑛𝑒 ) ) )
7 6 rexbidv ( 𝑁𝑉 → ( ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) ) )
8 7 rabbidv ( 𝑁𝑉 → { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } )
9 3 8 eqtrd ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } )