| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfoprab2 | 
							⊢ { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  𝜑 }  =  { 〈 𝑤 ,  𝑧 〉  ∣  ∃ 𝑥 ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							nfsbc1v | 
							⊢ Ⅎ 𝑥 [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑  | 
						
						
							| 3 | 
							
								2
							 | 
							19.41 | 
							⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 )  ↔  ( ∃ 𝑥 ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sbcopeq1a | 
							⊢ ( 𝑤  =  〈 𝑥 ,  𝑦 〉  →  ( [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑  ↔  𝜑 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							pm5.32i | 
							⊢ ( ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 )  ↔  ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							exbii | 
							⊢ ( ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 )  ↔  ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 ( 1st  ‘ 𝑤 )  | 
						
						
							| 8 | 
							
								
							 | 
							nfsbc1v | 
							⊢ Ⅎ 𝑦 [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑  | 
						
						
							| 9 | 
							
								7 8
							 | 
							nfsbcw | 
							⊢ Ⅎ 𝑦 [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑  | 
						
						
							| 10 | 
							
								9
							 | 
							19.41 | 
							⊢ ( ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 )  ↔  ( ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							bitr3i | 
							⊢ ( ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 )  ↔  ( ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							exbii | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 )  ↔  ∃ 𝑥 ( ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elvv | 
							⊢ ( 𝑤  ∈  ( V  ×  V )  ↔  ∃ 𝑥 ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉 )  | 
						
						
							| 14 | 
							
								13
							 | 
							anbi1i | 
							⊢ ( ( 𝑤  ∈  ( V  ×  V )  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 )  ↔  ( ∃ 𝑥 ∃ 𝑦 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 15 | 
							
								3 12 14
							 | 
							3bitr4i | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 )  ↔  ( 𝑤  ∈  ( V  ×  V )  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							opabbii | 
							⊢ { 〈 𝑤 ,  𝑧 〉  ∣  ∃ 𝑥 ∃ 𝑦 ( 𝑤  =  〈 𝑥 ,  𝑦 〉  ∧  𝜑 ) }  =  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑤  ∈  ( V  ×  V )  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) }  | 
						
						
							| 17 | 
							
								1 16
							 | 
							eqtri | 
							⊢ { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  𝜑 }  =  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑤  ∈  ( V  ×  V )  ∧  [ ( 1st  ‘ 𝑤 )  /  𝑥 ] [ ( 2nd  ‘ 𝑤 )  /  𝑦 ] 𝜑 ) }  |