Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
dfss2f
Metamath Proof Explorer
Description: Equivalence for subclass relation, using bound-variable hypotheses
instead of distinct variable conditions. (Contributed by NM , 3-Jul-1994) (Revised by Andrew Salmon , 27-Aug-2011) Avoid ax-13 .
(Revised by Gino Giotto , 19-May-2023)
Ref
Expression
Hypotheses
dfss2f.1
⊢ Ⅎ 𝑥 𝐴
dfss2f.2
⊢ Ⅎ 𝑥 𝐵
Assertion
dfss2f
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
dfss2f.1
⊢ Ⅎ 𝑥 𝐴
2
dfss2f.2
⊢ Ⅎ 𝑥 𝐵
3
dfss2
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) )
4
1
nfcri
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴
5
2
nfcri
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐵
6
4 5
nfim
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 )
7
nfv
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 )
8
eleq1w
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) )
9
eleq1w
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) )
10
8 9
imbi12d
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) )
11
6 7 10
cbvalv1
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) )
12
3 11
bitri
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) )