Metamath Proof Explorer


Theorem dfss2f

Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994) (Revised by Andrew Salmon, 27-Aug-2011) Avoid ax-13 . (Revised by Gino Giotto, 19-May-2023)

Ref Expression
Hypotheses dfss2f.1 𝑥 𝐴
dfss2f.2 𝑥 𝐵
Assertion dfss2f ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss2f.1 𝑥 𝐴
2 dfss2f.2 𝑥 𝐵
3 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) )
4 1 nfcri 𝑥 𝑧𝐴
5 2 nfcri 𝑥 𝑧𝐵
6 4 5 nfim 𝑥 ( 𝑧𝐴𝑧𝐵 )
7 nfv 𝑧 ( 𝑥𝐴𝑥𝐵 )
8 eleq1w ( 𝑧 = 𝑥 → ( 𝑧𝐴𝑥𝐴 ) )
9 eleq1w ( 𝑧 = 𝑥 → ( 𝑧𝐵𝑥𝐵 ) )
10 8 9 imbi12d ( 𝑧 = 𝑥 → ( ( 𝑧𝐴𝑧𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) ) )
11 6 7 10 cbvalv1 ( ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
12 3 11 bitri ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )