Metamath Proof Explorer


Theorem dftr2c

Description: Variant of dftr2 with commuted quantifiers, useful for shortening proofs and avoiding ax-11 . (Contributed by BTernaryTau, 28-Dec-2024)

Ref Expression
Assertion dftr2c ( Tr 𝐴 ↔ ∀ 𝑦𝑥 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr 𝐴 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )
2 elequ1 ( 𝑥 = 𝑧 → ( 𝑥𝑦𝑧𝑦 ) )
3 2 anbi1d ( 𝑥 = 𝑧 → ( ( 𝑥𝑦𝑦𝐴 ) ↔ ( 𝑧𝑦𝑦𝐴 ) ) )
4 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
5 3 4 imbi12d ( 𝑥 = 𝑧 → ( ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) ↔ ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) ) )
6 elequ2 ( 𝑦 = 𝑧 → ( 𝑥𝑦𝑥𝑧 ) )
7 eleq1w ( 𝑦 = 𝑧 → ( 𝑦𝐴𝑧𝐴 ) )
8 6 7 anbi12d ( 𝑦 = 𝑧 → ( ( 𝑥𝑦𝑦𝐴 ) ↔ ( 𝑥𝑧𝑧𝐴 ) ) )
9 8 imbi1d ( 𝑦 = 𝑧 → ( ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) ↔ ( ( 𝑥𝑧𝑧𝐴 ) → 𝑥𝐴 ) ) )
10 5 9 alcomw ( ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) ↔ ∀ 𝑦𝑥 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )
11 1 10 bitri ( Tr 𝐴 ↔ ∀ 𝑦𝑥 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )