Step |
Hyp |
Ref |
Expression |
1 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
2 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
4 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
5 |
3 4
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
6 |
|
elequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) |
7 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) ) |
10 |
5 9
|
alcomw |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
11 |
1 10
|
bitri |
⊢ ( Tr 𝐴 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |