Metamath Proof Explorer


Theorem dftr2c

Description: Variant of dftr2 with commuted quantifiers, useful for shortening proofs and avoiding ax-11 . (Contributed by BTernaryTau, 28-Dec-2024)

Ref Expression
Assertion dftr2c TrAyxxyyAxA

Proof

Step Hyp Ref Expression
1 dftr2 TrAxyxyyAxA
2 elequ1 x=zxyzy
3 2 anbi1d x=zxyyAzyyA
4 eleq1w x=zxAzA
5 3 4 imbi12d x=zxyyAxAzyyAzA
6 elequ2 y=zxyxz
7 eleq1w y=zyAzA
8 6 7 anbi12d y=zxyyAxzzA
9 8 imbi1d y=zxyyAxAxzzAxA
10 5 9 alcomw xyxyyAxAyxxyyAxA
11 1 10 bitri TrAyxxyyAxA