| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑥  ∈  ( V  ∖  𝐴 )  ↔  ( 𝑥  ∈  V  ∧  ¬  𝑥  ∈  𝐴 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpbiran | 
							⊢ ( 𝑥  ∈  ( V  ∖  𝐴 )  ↔  ¬  𝑥  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi1i | 
							⊢ ( ( 𝑥  ∈  ( V  ∖  𝐴 )  ∧  ¬  𝑥  ∈  𝐵 )  ↔  ( ¬  𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑥  ∈  ( ( V  ∖  𝐴 )  ∖  𝐵 )  ↔  ( 𝑥  ∈  ( V  ∖  𝐴 )  ∧  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 )  ↔  ( ¬  𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							3bitr4i | 
							⊢ ( 𝑥  ∈  ( ( V  ∖  𝐴 )  ∖  𝐵 )  ↔  ¬  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							con2bii | 
							⊢ ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 )  ↔  ¬  𝑥  ∈  ( ( V  ∖  𝐴 )  ∖  𝐵 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑥  ∈  ( V  ∖  ( ( V  ∖  𝐴 )  ∖  𝐵 ) )  ↔  ( 𝑥  ∈  V  ∧  ¬  𝑥  ∈  ( ( V  ∖  𝐴 )  ∖  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							mpbiran | 
							⊢ ( 𝑥  ∈  ( V  ∖  ( ( V  ∖  𝐴 )  ∖  𝐵 ) )  ↔  ¬  𝑥  ∈  ( ( V  ∖  𝐴 )  ∖  𝐵 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							bitr4i | 
							⊢ ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 )  ↔  𝑥  ∈  ( V  ∖  ( ( V  ∖  𝐴 )  ∖  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							uneqri | 
							⊢ ( 𝐴  ∪  𝐵 )  =  ( V  ∖  ( ( V  ∖  𝐴 )  ∖  𝐵 ) )  |