| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-vd3 | 
							⊢ ( (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )  ↔  ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜃 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							imbi1i | 
							⊢ ( ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜃 )  ↔  ( ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 )  →  𝜃 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 )  →  𝜃 )  ↔  ( ( 𝜑  ∧  𝜓 )  →  ( 𝜒  →  𝜃 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitri | 
							⊢ ( ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜃 )  ↔  ( ( 𝜑  ∧  𝜓 )  →  ( 𝜒  →  𝜃 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝜑  ∧  𝜓 )  →  ( 𝜒  →  𝜃 ) )  ↔  ( 𝜑  →  ( 𝜓  →  ( 𝜒  →  𝜃 ) ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitri | 
							⊢ ( ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  →  𝜃 )  ↔  ( 𝜑  →  ( 𝜓  →  ( 𝜒  →  𝜃 ) ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							bitri | 
							⊢ ( (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )  ↔  ( 𝜑  →  ( 𝜓  →  ( 𝜒  →  𝜃 ) ) ) )  |