| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-vd3 | 
							 |-  ( (. ph ,. ps ,. ch ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							imbi1i | 
							 |-  ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ( ph /\ ps ) /\ ch ) -> th ) )  | 
						
						
							| 4 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( ( ph /\ ps ) /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitri | 
							 |-  ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( ph /\ ps ) -> ( ch -> th ) ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitri | 
							 |-  ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							bitri | 
							 |-  ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) )  |