Metamath Proof Explorer


Theorem dgraacl

Description: Closure of the degree function on algebraic numbers. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion dgraacl ( 𝐴 ∈ 𝔸 → ( degAA𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 dgraalem ( 𝐴 ∈ 𝔸 → ( ( degAA𝐴 ) ∈ ℕ ∧ ∃ 𝑎 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑎 ) = ( degAA𝐴 ) ∧ ( 𝑎𝐴 ) = 0 ) ) )
2 1 simpld ( 𝐴 ∈ 𝔸 → ( degAA𝐴 ) ∈ ℕ )