Description: Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dgraaf | ⊢ degAA : 𝔸 ⟶ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | 1 | infex | ⊢ inf ( { 𝑏 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑏 ∧ ( 𝑝 ‘ 𝑎 ) = 0 ) } , ℝ , < ) ∈ V |
| 3 | df-dgraa | ⊢ degAA = ( 𝑎 ∈ 𝔸 ↦ inf ( { 𝑏 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑏 ∧ ( 𝑝 ‘ 𝑎 ) = 0 ) } , ℝ , < ) ) | |
| 4 | 2 3 | fnmpti | ⊢ degAA Fn 𝔸 |
| 5 | dgraacl | ⊢ ( 𝑎 ∈ 𝔸 → ( degAA ‘ 𝑎 ) ∈ ℕ ) | |
| 6 | 5 | rgen | ⊢ ∀ 𝑎 ∈ 𝔸 ( degAA ‘ 𝑎 ) ∈ ℕ |
| 7 | ffnfv | ⊢ ( degAA : 𝔸 ⟶ ℕ ↔ ( degAA Fn 𝔸 ∧ ∀ 𝑎 ∈ 𝔸 ( degAA ‘ 𝑎 ) ∈ ℕ ) ) | |
| 8 | 4 6 7 | mpbir2an | ⊢ degAA : 𝔸 ⟶ ℕ |