Metamath Proof Explorer


Theorem dgraaf

Description: Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaf degAA : 𝔸 ⟶ ℕ

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 1 infex inf ( { 𝑏 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑏 ∧ ( 𝑝𝑎 ) = 0 ) } , ℝ , < ) ∈ V
3 df-dgraa degAA = ( 𝑎 ∈ 𝔸 ↦ inf ( { 𝑏 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑏 ∧ ( 𝑝𝑎 ) = 0 ) } , ℝ , < ) )
4 2 3 fnmpti degAA Fn 𝔸
5 dgraacl ( 𝑎 ∈ 𝔸 → ( degAA𝑎 ) ∈ ℕ )
6 5 rgen 𝑎 ∈ 𝔸 ( degAA𝑎 ) ∈ ℕ
7 ffnfv ( degAA : 𝔸 ⟶ ℕ ↔ ( degAA Fn 𝔸 ∧ ∀ 𝑎 ∈ 𝔸 ( degAA𝑎 ) ∈ ℕ ) )
8 4 6 7 mpbir2an degAA : 𝔸 ⟶ ℕ