Metamath Proof Explorer


Theorem dgraaf

Description: Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaf deg 𝔸 : 𝔸

Proof

Step Hyp Ref Expression
1 ltso < Or
2 1 infex sup b | p Poly 0 𝑝 deg p = b p a = 0 < V
3 df-dgraa deg 𝔸 = a 𝔸 sup b | p Poly 0 𝑝 deg p = b p a = 0 <
4 2 3 fnmpti deg 𝔸 Fn 𝔸
5 dgraacl a 𝔸 deg 𝔸 a
6 5 rgen a 𝔸 deg 𝔸 a
7 ffnfv deg 𝔸 : 𝔸 deg 𝔸 Fn 𝔸 a 𝔸 deg 𝔸 a
8 4 6 7 mpbir2an deg 𝔸 : 𝔸