Description: Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dgraaf | |- degAA : AA --> NN |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso | |- < Or RR |
|
2 | 1 | infex | |- inf ( { b e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = b /\ ( p ` a ) = 0 ) } , RR , < ) e. _V |
3 | df-dgraa | |- degAA = ( a e. AA |-> inf ( { b e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = b /\ ( p ` a ) = 0 ) } , RR , < ) ) |
|
4 | 2 3 | fnmpti | |- degAA Fn AA |
5 | dgraacl | |- ( a e. AA -> ( degAA ` a ) e. NN ) |
|
6 | 5 | rgen | |- A. a e. AA ( degAA ` a ) e. NN |
7 | ffnfv | |- ( degAA : AA --> NN <-> ( degAA Fn AA /\ A. a e. AA ( degAA ` a ) e. NN ) ) |
|
8 | 4 6 7 | mpbir2an | |- degAA : AA --> NN |