Metamath Proof Explorer


Theorem dgraaf

Description: Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaf
|- degAA : AA --> NN

Proof

Step Hyp Ref Expression
1 ltso
 |-  < Or RR
2 1 infex
 |-  inf ( { b e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = b /\ ( p ` a ) = 0 ) } , RR , < ) e. _V
3 df-dgraa
 |-  degAA = ( a e. AA |-> inf ( { b e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = b /\ ( p ` a ) = 0 ) } , RR , < ) )
4 2 3 fnmpti
 |-  degAA Fn AA
5 dgraacl
 |-  ( a e. AA -> ( degAA ` a ) e. NN )
6 5 rgen
 |-  A. a e. AA ( degAA ` a ) e. NN
7 ffnfv
 |-  ( degAA : AA --> NN <-> ( degAA Fn AA /\ A. a e. AA ( degAA ` a ) e. NN ) )
8 4 6 7 mpbir2an
 |-  degAA : AA --> NN