Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> A e. CC ) |
2 |
|
eldifsn |
|- ( P e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( P e. ( Poly ` QQ ) /\ P =/= 0p ) ) |
3 |
2
|
biimpri |
|- ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) -> P e. ( ( Poly ` QQ ) \ { 0p } ) ) |
4 |
3
|
adantr |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> P e. ( ( Poly ` QQ ) \ { 0p } ) ) |
5 |
|
simprr |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( P ` A ) = 0 ) |
6 |
|
fveq1 |
|- ( a = P -> ( a ` A ) = ( P ` A ) ) |
7 |
6
|
eqeq1d |
|- ( a = P -> ( ( a ` A ) = 0 <-> ( P ` A ) = 0 ) ) |
8 |
7
|
rspcev |
|- ( ( P e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( P ` A ) = 0 ) -> E. a e. ( ( Poly ` QQ ) \ { 0p } ) ( a ` A ) = 0 ) |
9 |
4 5 8
|
syl2anc |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> E. a e. ( ( Poly ` QQ ) \ { 0p } ) ( a ` A ) = 0 ) |
10 |
|
elqaa |
|- ( A e. AA <-> ( A e. CC /\ E. a e. ( ( Poly ` QQ ) \ { 0p } ) ( a ` A ) = 0 ) ) |
11 |
1 9 10
|
sylanbrc |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> A e. AA ) |
12 |
|
dgraaval |
|- ( A e. AA -> ( degAA ` A ) = inf ( { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } , RR , < ) ) |
13 |
11 12
|
syl |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( degAA ` A ) = inf ( { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } , RR , < ) ) |
14 |
|
ssrab2 |
|- { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } C_ NN |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
14 15
|
sseqtri |
|- { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } C_ ( ZZ>= ` 1 ) |
17 |
|
dgrnznn |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( deg ` P ) e. NN ) |
18 |
|
eqid |
|- ( deg ` P ) = ( deg ` P ) |
19 |
5 18
|
jctil |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( ( deg ` P ) = ( deg ` P ) /\ ( P ` A ) = 0 ) ) |
20 |
|
fveqeq2 |
|- ( b = P -> ( ( deg ` b ) = ( deg ` P ) <-> ( deg ` P ) = ( deg ` P ) ) ) |
21 |
|
fveq1 |
|- ( b = P -> ( b ` A ) = ( P ` A ) ) |
22 |
21
|
eqeq1d |
|- ( b = P -> ( ( b ` A ) = 0 <-> ( P ` A ) = 0 ) ) |
23 |
20 22
|
anbi12d |
|- ( b = P -> ( ( ( deg ` b ) = ( deg ` P ) /\ ( b ` A ) = 0 ) <-> ( ( deg ` P ) = ( deg ` P ) /\ ( P ` A ) = 0 ) ) ) |
24 |
23
|
rspcev |
|- ( ( P e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( ( deg ` P ) = ( deg ` P ) /\ ( P ` A ) = 0 ) ) -> E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = ( deg ` P ) /\ ( b ` A ) = 0 ) ) |
25 |
4 19 24
|
syl2anc |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = ( deg ` P ) /\ ( b ` A ) = 0 ) ) |
26 |
|
eqeq2 |
|- ( a = ( deg ` P ) -> ( ( deg ` b ) = a <-> ( deg ` b ) = ( deg ` P ) ) ) |
27 |
26
|
anbi1d |
|- ( a = ( deg ` P ) -> ( ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) <-> ( ( deg ` b ) = ( deg ` P ) /\ ( b ` A ) = 0 ) ) ) |
28 |
27
|
rexbidv |
|- ( a = ( deg ` P ) -> ( E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) <-> E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = ( deg ` P ) /\ ( b ` A ) = 0 ) ) ) |
29 |
28
|
elrab |
|- ( ( deg ` P ) e. { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } <-> ( ( deg ` P ) e. NN /\ E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = ( deg ` P ) /\ ( b ` A ) = 0 ) ) ) |
30 |
17 25 29
|
sylanbrc |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( deg ` P ) e. { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } ) |
31 |
|
infssuzle |
|- ( ( { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } C_ ( ZZ>= ` 1 ) /\ ( deg ` P ) e. { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } ) -> inf ( { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } , RR , < ) <_ ( deg ` P ) ) |
32 |
16 30 31
|
sylancr |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> inf ( { a e. NN | E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` b ) = a /\ ( b ` A ) = 0 ) } , RR , < ) <_ ( deg ` P ) ) |
33 |
13 32
|
eqbrtrd |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( degAA ` A ) <_ ( deg ` P ) ) |