Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( deg ` P ) < ( degAA ` A ) ) |
2 |
|
simpl2 |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> P e. ( Poly ` QQ ) ) |
3 |
|
dgrcl |
|- ( P e. ( Poly ` QQ ) -> ( deg ` P ) e. NN0 ) |
4 |
2 3
|
syl |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( deg ` P ) e. NN0 ) |
5 |
4
|
nn0red |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( deg ` P ) e. RR ) |
6 |
|
simpl1 |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> A e. AA ) |
7 |
|
dgraacl |
|- ( A e. AA -> ( degAA ` A ) e. NN ) |
8 |
6 7
|
syl |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( degAA ` A ) e. NN ) |
9 |
8
|
nnred |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( degAA ` A ) e. RR ) |
10 |
5 9
|
ltnled |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( ( deg ` P ) < ( degAA ` A ) <-> -. ( degAA ` A ) <_ ( deg ` P ) ) ) |
11 |
1 10
|
mpbid |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> -. ( degAA ` A ) <_ ( deg ` P ) ) |
12 |
|
simpl2 |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ ( P =/= 0p /\ ( P ` A ) = 0 ) ) -> P e. ( Poly ` QQ ) ) |
13 |
|
simprl |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ ( P =/= 0p /\ ( P ` A ) = 0 ) ) -> P =/= 0p ) |
14 |
|
simpl1 |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ ( P =/= 0p /\ ( P ` A ) = 0 ) ) -> A e. AA ) |
15 |
|
aacn |
|- ( A e. AA -> A e. CC ) |
16 |
14 15
|
syl |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ ( P =/= 0p /\ ( P ` A ) = 0 ) ) -> A e. CC ) |
17 |
|
simprr |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ ( P =/= 0p /\ ( P ` A ) = 0 ) ) -> ( P ` A ) = 0 ) |
18 |
|
dgraaub |
|- ( ( ( P e. ( Poly ` QQ ) /\ P =/= 0p ) /\ ( A e. CC /\ ( P ` A ) = 0 ) ) -> ( degAA ` A ) <_ ( deg ` P ) ) |
19 |
12 13 16 17 18
|
syl22anc |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ ( P =/= 0p /\ ( P ` A ) = 0 ) ) -> ( degAA ` A ) <_ ( deg ` P ) ) |
20 |
19
|
expr |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> ( ( P ` A ) = 0 -> ( degAA ` A ) <_ ( deg ` P ) ) ) |
21 |
11 20
|
mtod |
|- ( ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) /\ P =/= 0p ) -> -. ( P ` A ) = 0 ) |
22 |
21
|
ex |
|- ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) -> ( P =/= 0p -> -. ( P ` A ) = 0 ) ) |
23 |
22
|
necon4ad |
|- ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) -> ( ( P ` A ) = 0 -> P = 0p ) ) |
24 |
|
0pval |
|- ( A e. CC -> ( 0p ` A ) = 0 ) |
25 |
15 24
|
syl |
|- ( A e. AA -> ( 0p ` A ) = 0 ) |
26 |
|
fveq1 |
|- ( P = 0p -> ( P ` A ) = ( 0p ` A ) ) |
27 |
26
|
eqeq1d |
|- ( P = 0p -> ( ( P ` A ) = 0 <-> ( 0p ` A ) = 0 ) ) |
28 |
25 27
|
syl5ibrcom |
|- ( A e. AA -> ( P = 0p -> ( P ` A ) = 0 ) ) |
29 |
28
|
3ad2ant1 |
|- ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) -> ( P = 0p -> ( P ` A ) = 0 ) ) |
30 |
23 29
|
impbid |
|- ( ( A e. AA /\ P e. ( Poly ` QQ ) /\ ( deg ` P ) < ( degAA ` A ) ) -> ( ( P ` A ) = 0 <-> P = 0p ) ) |