Metamath Proof Explorer


Theorem dgraa0p

Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion dgraa0p A 𝔸 P Poly deg P < deg 𝔸 A P A = 0 P = 0 𝑝

Proof

Step Hyp Ref Expression
1 simpl3 A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 deg P < deg 𝔸 A
2 simpl2 A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P Poly
3 dgrcl P Poly deg P 0
4 2 3 syl A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 deg P 0
5 4 nn0red A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 deg P
6 simpl1 A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 A 𝔸
7 dgraacl A 𝔸 deg 𝔸 A
8 6 7 syl A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 deg 𝔸 A
9 8 nnred A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 deg 𝔸 A
10 5 9 ltnled A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 deg P < deg 𝔸 A ¬ deg 𝔸 A deg P
11 1 10 mpbid A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 ¬ deg 𝔸 A deg P
12 simpl2 A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 P Poly
13 simprl A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 P 0 𝑝
14 simpl1 A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 A 𝔸
15 aacn A 𝔸 A
16 14 15 syl A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 A
17 simprr A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 P A = 0
18 dgraaub P Poly P 0 𝑝 A P A = 0 deg 𝔸 A deg P
19 12 13 16 17 18 syl22anc A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 deg 𝔸 A deg P
20 19 expr A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 P A = 0 deg 𝔸 A deg P
21 11 20 mtod A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 ¬ P A = 0
22 21 ex A 𝔸 P Poly deg P < deg 𝔸 A P 0 𝑝 ¬ P A = 0
23 22 necon4ad A 𝔸 P Poly deg P < deg 𝔸 A P A = 0 P = 0 𝑝
24 0pval A 0 𝑝 A = 0
25 15 24 syl A 𝔸 0 𝑝 A = 0
26 fveq1 P = 0 𝑝 P A = 0 𝑝 A
27 26 eqeq1d P = 0 𝑝 P A = 0 0 𝑝 A = 0
28 25 27 syl5ibrcom A 𝔸 P = 0 𝑝 P A = 0
29 28 3ad2ant1 A 𝔸 P Poly deg P < deg 𝔸 A P = 0 𝑝 P A = 0
30 23 29 impbid A 𝔸 P Poly deg P < deg 𝔸 A P A = 0 P = 0 𝑝